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Overview of CBPV
Paul Blain Levy introduced Call-by-push-value as a subsuming paradigm
for effectful computation

CBV CBN

CBPV

Domain Theory Presheaves Op. Semantics

Preserves equational theories

Observation: Denotational models of CBV/CBN naturally decompose
into CBPV structure. Semantics of CBPV is easier even though it’s
more general
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Intermediate Representations

Haskell C++ Rust

LLVM

x86 ARM WASM

Max S. New (University of Michigan) Compiling with Call-by-push-value MFPS 2023 3 / 39



Language Platforms

Java Scala Clojure

JVM Bytecode

JVM Web Browsers

Compare: Racket, .NET,
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CBPV as an IR or Language Platform?

1 As an IR: CBPV structure arises in compilation

2 CBV, CBN embeddings in CBPV preserve and reflect equational
theories:
Foundation for a language platform for verified language
implementations that preserve reasoning (equality, logics) not just
whole-program behavior?
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Outline

1 Call-by-push-value Overview

2 CBPV subsumes Functional IRs
CBPV subsumes ANF, MNF
Stack-Passing Style subsumes CPS

3 Equality-Preserving Compiler Passes in CBPV/SPS
Polymorphic Closure Conversion
Polymorphic CPS Conversion

4 Computation/Stack Types in Compilation
Calling Conventions as Types
Relative Monads

5 Future Work
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Call-by-push-value Overview
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Basics of CBPV

Refine Moggi’s analysis of effects using monads in terms of adjunctions
Effectful computation naturally involves two kinds of types:

1 Value types: the types of pure data, first-class values

2 Computation types: the types of effectful computations

Three notions of term

1 Pure functions Γ ⊢ V : A

2 Effectful functions Γ ⊢ M : B

3 Linear functions aka “Stacks” Γ | z : B ⊢ L : B ′
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Basics of CBPV

Value Types, Values

A,A’ ::= UB |Bool
V, V’ ::= x | thunkM

true | false
(V ,V ′) |V .πi

A value is

A UB is a “thUnked” B

A Bool is either true or false

Computation Types, Computations

B,B’ ::= FA |A→ B
M,M’ ::= z | forceV

ifV M M ′

retV
let x ← M;M ′

λx .M |M V
prints;M
readx .M

A computation does

An FA “Feturns” A values

An A→ B pops an A, continues
as B
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Equations in CBPV

Every type has associated βη equality rules

force thunkM = M (V : UB) = thunk forceV

(λx .M)V = M[V /x ] (M : A→ B) = λx .Mx

let x ← retV ;N = M[V /x ] N[M : FA/z ] = let z ← M;N

And linear terms are homomorphisms of effect operations:

M[print s;N/z ] = print s;M[N/z ]

M[read x .N/z ] = read x .M[N/z ]
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CBPV Reconstructs CBV and CBN

CBV term Γ ⊢ M : A becomes

Γcbv ⊢ Mcbv : FAcbv

“CBV terms are always returning”

(Bool)cbv = Bool

(A ⇀ A′)cbv = U(Acbv → FA′cbv )

CBN terms x1 : B1, . . . ⊢ M : B
become

x1 : UB
cbn
1 , . . . ⊢ Mcbn : Bcbn

“CBN variables are always thunks”

(Bool)cbn = FBool

(B → B ′)cbn = UBcbn → B ′cbn
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CBPV subsumes Functional IRs
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A-Normal Form, Monadic Normal Form

A-Normal Form:

Values ::= x |λx .M | true | false
OperationsO ::= retV | ifV M M ′ |V V ′ |print s | read

TermsM ::= O | let x ← O;M ′

Monadic Normal Form:

Values ::= x |λx .M | true | false
TermsM ::= let x ← M;M ′ | retV | ifV M M ′ |V V ′ |print s | read

With equational theories as well. Every MNF term is equal in the theory to
an ANF term.
Observe: this is isomorphic a “full” subset of CBPV where the only
computation type is FA and A ⇀ A′ is given βη rules corresponding to
U(A→ FA′).
“Fine-grained CBV”, see Levy, Power and Thielecke, Information and
Computation 2003.
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CBPV Subsumes ANF, MNF

CBV

MNF ANF

CBPV

Max S. New (University of Michigan) Compiling with Call-by-push-value MFPS 2023 14 / 39



ANF is Equivalent to Continuation Passing Style

A-normal form was introduced in Sabry and Felleisen Reasoning about
Programs in Continuation-Passing Style Lisp & F.P. 1992.
Conversion to A-normal form is equivalent to CPS conversion followed by
“unCPS”.

CBV

ANF CPS
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ANF : CPS as CBPV : ?

ANF CPS

CBPV
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ANF : CPS as CBPV : ?

ANF CPS

CBPV ?
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Stack-Passing Style: The Opposite of CBPV

Two kinds of types:

1 Value types: similar to CBPV

2 Stack types: the type of the stack a computation runs against

Three notions of term

1 Values Γ ⊢ V : A

2 Stacks, i.e., linear values Γ | z : B ⊢ S : B ′

3 Computations, Γ | z : B ⊢ M

With “obvious” substitution principles.
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Stack-Passing Style: The Opposite of CBPV

Value Types, Values

A,A’ ::=
p
¬B |Bool

V, V’ ::= x |λz .M | true | false

A value is

A
p
¬B is a first class procedure

that requires a B stack to run.

A Bool is true or false.

Stack Types, Stacks

B,B’ ::=
k¬A |A⊘ B

S, S’ ::= z |λx .S | (V ,S)

A stack is, linearly,

A
k¬A is a linear kontinuation for

A values

An A⊘ B is an A pushed onto a
B stack.

Computations

M,M ′ ::= V (S) |S(V ) | ifV M M ′

let(x , z) = S in M
prints;M | readx .M

A computation isn’t (no output)
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CBPV to SPS and Back

Boolsps = Bool

(UB)sps =
p
¬Bsps

(A→ B)sps = Asps ⊘ Bsps

(FA)sps =
k¬Asps

Boolcbpv = Bool

(
p
¬B)cbpv = UBcbpv

(A⊘ B)cbpv = Acbpv → Bcbpv

(
k¬A)cbpv = FAcbpv

Linear duality!
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CBPV and SPS as Flavors of Linear Logic

Different “flavors” of linear logic based on the allowed sequents

Γ |∆ ⊢ M : ∆′

Calculus Allowed |∆| Allowed |∆′|
Enriched-Effect Calculus = 1 = 1

Call-by-push-value ≤ 1 = 1
Stack-passing Style = 1 ≤ 1

Intuitionistic < ω = 1
Co-Intuitionistic = 1 < ω

Classical < ω < ω
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ANF-CPS Correspondence as Linear Duality

ANF CPS

CBPV SPS

EEC

CLL
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Equality-Preserving Compiler Passes in CBPV/SPS
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Two “Polymorphic” Compiler Passes

Typed Closure conversion, Minamide, Morrisett and Harper, POPL
’96

(A ⇀ A′)cc = ∃X .X × (X ,A ⇀code A′)

Polymorphic Continuation Passing style

(A ⇀ A′)cps = ∀X .A, (A′ → X )→ X

From control effects to typed continuation passing, Thielecke, POPL
’03

Both passes are type preserving, equivalence preserving*.
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Polymorphic Closure Conversion

Target architectures don’t have built in support for closures, need to
implement them as a pair of an environment and a code pointer.

(A ⇀ A′)cc = ∃X .X × (X ,A ⇀code A′)

(For equality preservation: need quotient/parametricity)

In CBPV the closures are the thunks:

(UB)cc = ∃X : VTy.X × CODE(X → Bcc)

In SPS, the closures are the procedures:

(
p
¬B)cc = ∃X : ValTy.X × code¬ (X ⊘ Bcc)
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Polymorphic CPS Conversion
Target architectures only support jumps, not calls with return, need to
pass continuations as arguments.
To support arbitrary calls, functions must pass return continuations as
arguments.

(A ⇀ A′)cps = ∀X .A, (A′ → X )→ X

(To preserve equality: require naturality/parametricity)

In CBPV only FA computations return:

(FA)cps = ∀R : CompTy.U(Acps → R)→ R

Isn’t SPS already in CPS form? But we dualize:

In SPS, FA becomes
k¬A the linear continuations:

(
k¬A)cps = ∃S : StkTy.

p
¬(Acps ⊘ S)⊘ S

In the dual “polymorphic CPS” is “polymorphic closure conversion” of
kontinuations!
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Does Polymorphic CPS Conversion Preserve Equivalence?

Ahmed and Blume, ICFP ’11: polymorphic CPS does not preserve
equivalence in CBV evaluation order:

ΛX .λx : 1, k : (Bool→ X ).y ← k(true); k(false)

Polymorphic but still “abuses” the kontinuation.

But in CBPV parametricity is enough to rule out this behavior. Why?

((A ⇀ A′)cps)cbv = (∀X .Acps , (A′cps → X )→ X )cbv

= ∀X : ValTy.Acps,cbv → U(A′cps,cbpv → FX )→ FX

̸∼= ∀R : CompTy.Acps,cbv → U(A′cps,cbpv → R)→ R
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Computation/Stack Types in Compilation
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(Stack-based) Calling Conventions as Computation Types

A1, . . . ,An ⇀ A′

1 Left-to-right

A0 → A1 → · · · → ∀R.CODE(A′ → R)→ R

2 Right-to-left

An → An−1 → · · · → ∀R.CODE(A′ → R)→ R

3 return address before arguments

∀R.CODE(A′ → R)→ A0 → A1 → · · · → R

4 Caller-cleanup (cdecl)

∀R.CODE(A′ → A0 → A1 → · · ·R)→ A0 → A1 → · · · → R
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(Stack-based) Calling Conventions as Stack Types

Can dualize the same translations to SPS:

A1, . . . ,An ⇀ A′

e.g.,

A0 ⊘ A1 ⊘ · · · ∃S .
code¬ (A′ ⊘ S)⊘ S

Compare: Stack-based calling conventions in Stack-Based Typed Assembly
Language Morrissett, Krary, Glew and Walker JFP 2002
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Monads

A monad T in λ calculus is an operation on types T with

η : B → TB ′ −∗ : (B → TB ′)→ (TB → TB ′)

satisfying 3 equations.

Example: “error monad”
TA = E + A

Good for equational reasoning, but not a good model of how exceptions
are implemented. Monads for effects fundamentally conflate two aspects:
TA is a first class value representing a computation that can run.
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Relative Monads

A relative monad12 in CBPV consists of a type constructor

Eff : ValTy→ CompTy

with operations

η : A→ EffA
x : A ⊢ N : EffA′

z : EffA ⊢ x ←Eff z ;N : EffA′

satisfying 3 equations.

1Altenkirch, Chapman and Uustalu, LMCS 2015
2Relative to F , or to the profunctor of computations
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Relative Exception Monads

Näıve implementation:
F (A+ E )

Double barreled continuations:

∀R.U(A→ R)→ U(E → R)→ R

Double barreled code pointers:

∀R.CODE(A→ R)→ CODE(E → R)→ R
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Relative Exception Monads

Stack-walking exception3:

ExnE A ∼= F (A+ E )

&(∀X : ValTy.U(A→ ExnE X )→ ExnE X )

&∀X : ValTy.U(E → ExnX A)→ ExnX A

Easier to see as the dual in SPS:

ExnE A ∼= k¬(A+ E )

⊕ (∃X : ValTy.U(A⊘ ExnE X )⊘ ExnE X )

⊕ (∃X : ValTy.U(E ⊘ ExnX A)⊘ ExnX A

(Caveat: need to quotient to get a monad)

1Caveat: Need to restrict to well-behaved elements to get a monad
2Caveat: need to restrict to a well-behaved subset to get a monad
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Future Work
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Future: Beyond The Stack, Beyond Sequentiality

1 Only have stack-based calling conventions in CBPV proper. Can
registers be incorporated in a similarly well-behaved type theory?

2 CBPV gives a foundation for sequential composition, can we combine
CBPV with Intuitionistic/Classical LL to similarly analyze IRs for
concurrent/parallel code?

Max S. New (University of Michigan) Compiling with Call-by-push-value MFPS 2023 36 / 39



Future: Beyond The Stack, Beyond Sequentiality

1 Only have stack-based calling conventions in CBPV proper. Can
registers be incorporated in a similarly well-behaved type theory?

2 CBPV gives a foundation for sequential composition, can we combine
CBPV with Intuitionistic/Classical LL to similarly analyze IRs for
concurrent/parallel code?

Max S. New (University of Michigan) Compiling with Call-by-push-value MFPS 2023 36 / 39



WIP: Implementation

1 Zydeco, a CBPV Surface Language + Polymorphism
https://github.com/zydeco-lang/zydeco

2 Surface language where we can experiment with writing code using
new abstractions like relative monads.

3 Ongoing work on a backend using a CBPV IR

4 Extend to Dependent CBPV, compile Dependent CBPV...
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CBPV as an IR

CBPV structure arises naturally in compilation

Foundation for verified equality preserving compilation

Computation/Stack types useful for typing low-level programming
idioms

An implementation called Zydeco in progress:
https://github.com/zydeco-lang/zydeco
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BONUS: Relative Monads in SPS

A relative monad in SPS consists of a type constructor

Not : ValTy→ StkTy

with operations

x : A | z : NotA ⊢ call(z , x)
x : A | z : NotA′ ⊢ M

z : NotA′ ⊢ λNotx .M : NotA

satisfying 3 equations.
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