
GRADUAL TYPE PRECISION
AS RETRACTION

Max S. New
maxnew@ccs.neu.edu

Semantics for Gradual Typing?

Dana Scott related typed and untyped semantics in the 70s,

can that work provide insight into gradual typing?

We explore type precision and blame from this semantic point

of view.

A v ?
A v A′ B v B ′

(A→ B) v (A′→ B ′)

Originally called näıve subtyping due to its covariance, it has

a constructive interpretation as retractions

What do Gradual Types Mean?

A syntactic type A denotes a section-retraction pair to the

dynamic type in the cast language:

A
sA
� ?

rA
� A

such that rs = idA, which together we denote A �
� ?. A

retraction is a typed contract, the retraction enforces the con-

tract and the section forgets values satisfy the contract.

From base types like

? �
� ?,B �

� ?,N �
� ?, (?→ ?) �

� ?

connectives build types compositionally:

(A→ B) �
� (?→ ?) �

� ?

Precision and Casts

All casts in a gradually typed language can be specified by

the equation

A⇒ B ∼= A
sA
� ?

rB
� B

Type precision can then be defined to mean the casts form a

retraction:

A v B
def
= A⇒ B ⇒ A ∼= A

id→ A

Which is equivalent to saying that A’s retraction from ? is a

subretraction of B ’s, which intuitively means that A’s contract

is stronger than B ’s. That is, everything that satisfies A also

satisfies B , and checking A can be done by first checking B :

A B A B

? ?

Retractions and Blame

Wadler and Findler (09) gave a semantic definition of type

precision in terms of blame in the explicit cast language, but

they don’t provide justification for the definition of blame. We

turn this around to provide seamntic criteria for blame. They

decompose precision into positive and negative subtyping:

A ≤+ B
def
= A⇒ B never blames A

B ≤− A
def
= B ⇒ A never blames A

Then A v B ∼= A ≤+ B ∧ B ≤− A. We can instead

interpret them constructively, A ≤+ B means A v B but

denotes the section A ⇒ B , whereas B ≤− A denotes the

retraction B ⇒ A. Then the positive subtyping rules admit

both interpretations:

A ≤+ ?
A′ ≤− A B ≤+ B ′

(A→ B) ≤+ (A′→ B ′)

The dual negative subtyping rules are admissible under both

interpretations:

? ≤− A
A′ ≤+ A B ≤− B ′

(A→ B) ≤− (A′→ B ′)

But WF09contains a rule not admissible by the retraction

interpretation, for any ground type G , such as N,B, (?→ ?),

G ≤− ?

However, this is the result of an arbitrary choice in the def-

inition of blame! As an example, take a language with two

primitive printing functions, printB, printN, and consider a pro-

gram that reduces to the following:

> true→ B � ? � N printN→ ⊥
Who’s to blame? In WF09, the term is always blamed, but

the language doesn’t know which choice was right, so we

propose that both the term and the continuation at ? should

be blamed! With this change to this system, the definitions

coincide.

1


