
Denotational Semantics of Gradual Typing using Synthetic
Guarded Domain Theory

Eric Giovannini

Electrical Engineering and Computer

Science

University of Michigan

USA

ericgio@umich.edu

Tingting Ding

Electrical Engineering and Computer

Science

University of Michigan

USA

tingtind@umich.edu

Max S. New

Electrical Engineering and Computer

Science

University of Michigan

USA

maxsnew@umich.edu

ABSTRACT
Gradually typed programming languages, which allow for soundly

mixing static and dynamically typed programming styles, present a

strong challenge for metatheorists. Even the simplest sound gradu-

ally typed languages feature at least recursion and errors, with real-

istic languages featuring furthermore runtime allocation of memory

locations and dynamic type tags. Further, the desired metatheoretic

properties of gradually typed languages have become increasingly

sophisticated: validity of type based equational reasoning as well

as the relational property known as the gradual guarantee or grad-

uality. Many recent works have tackled verifying these properties,

but the resulting mathematical developments are highly repetitive

and tedious, with few reusable theorems persisting across different

developments.

In this work, we present a new denotational account of gradual

typing semantics developed using guarded domain theory. Guarded

domain theory combines the expressive power of step-indexed

logical relations for modeling recursive features with the modu-

larity and reusability of denotational semantics. Further, recent

extensions to cubical Agda mean that synthetic guarded domain

theory is readily mechanized in a proof assistant. We demonstrate

the feasibility of this approach with a model of gradually typed

lambda calculus and prove the validity of beta-eta equality and the

graduality theorem for the denotational model. This model should

provide the basis for a reusable mathematical theory of gradually

typed program semantics.

ACM Reference Format:
Eric Giovannini, Tingting Ding, and Max S. New. 2018. Denotational Se-

mantics of Gradual Typing using Synthetic Guarded Domain Theory. In

Woodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05, 2018,
Woodstock, NY . ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/

1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
1.1 Gradual Typing and Graduality
In modern programming language design, there is a tension be-

tween static typing and dynamic typing disciplines. With static

typing, the code is type-checked at compile time, while in dynamic

typing, the type checking is deferred to run-time. Both approaches

have benefits: with static typing, the programmer is assured that if

the program passes the type-checker, their program is free of type

errors, and moreover, soundness of the equational theory implies

that program optimizations are valid. Meanwhile, dynamic typing

allows the programmer to rapidly prototype their application code

without needing to commit to fixed type signatures for their func-

tions. Most languages choose between static or dynamic typing

and as a result, programmers that initially write their code in a

dynamically typed language in order to benefit from faster proto-

typing and development time need to rewrite the some or all of

their codebase in a static language if they would like to receive the

benefits of static typing once their codebase has matured.

Gradually-typed languages [30, 33] seek to resolve this tension by
allowing for both static and dynamic typing disciplines to be used in

the same codebase, and by supporting smooth interoperability be-

tween statically-typed and dynamically-typed code. This flexibility

allows programmers to begin their projects in a dynamic style and

enjoy the benefits of dynamic typing related to rapid prototyping

and easy modification while the codebase “solidifies”. Over time,

as parts of the code become more mature and the programmer is

more certain of what the types should be, the code can be gradually
migrated to a statically typed style without needing to rewrite the

project in a completely different language.

In order for this to work as expected, gradually-typed languages

should allow for different parts of the codebase to be in differ-

ent places along the spectrum from dynamic to static, and allow

for those different parts to interact with one another. Moreover,

gradually-typed languages should support the smooth migration

from dynamic typing to static typing, in that the programmer can

initially leave off the typing annotations and provide them later

without altering the meaning of the program. Furthermore, the

parts of the program that are written in a dynamic style should

soundly interoperate with the parts that are written in a static style.

That is, the interaction between the static and dynamic components

of the codebase should preserve the guarantees made by the static

types. In particular, while statically-typed code can error at runtime

in a gradually-typed language, such an error can always be traced

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini, Tingting Ding, and Max S. New

back to a dynamically-typed term that violated the typing contract

imposed by statically typed code.

One of the fundamental theorems for gradually typed languages

is dynamic gradual guarantee, originally defined by Siek, Vitousek,

Cimini, and Boyland [31], also called graduality [24], by analogy

with parametricity. Informally, graduality says that going from

a dynamic to static style should only allow for the introduction

of static or dynamic type errors, and not otherwise change the

meaning of the program. This is a way to capture programmer

intuition that increasing type precision corresponds to a generalized

form assertions at runtime only, and so they can trust that prior

observed behavior of their dynamically typed code will remain

unchanged as long as it satisfies the new stricter typing discipline.

Additionally, gradually typed languages should offer some of

the benefits of static typing. While classical type soundness, that

well-typed programs are free from runtime errors, is not compati-

ble with runtime type errors, we can instead focus on type-based
reasoning. For instance, while dynamically typed 𝜆 calculi only

satisfy 𝛽 equality for their type formers, statically typed 𝜆 calculi

additionally satisfy type-dependent 𝜂 properties that ensure that

functions are determined by their behavior under application and

that pattern matching on data types is safe and exhaustive.

Our goal in this work is to provide a reusable semantic frame-

work for gradually typed languages that can be used to prove the

aforementioned properties: graduality and type-based reasoning.

1.2 Limitations of Prior Work
We give an overview of current approaches to proving graduality

of languages and why they do not meet our criteria of a reusable

semantic framework.

1.2.1 From Static to Gradual. Current approaches to constructing

languages that satisfy the graduality property include the methods

of Abstracting Gradual Typing [14] and the formal tools of the

Gradualizer [7]. These allow the language developer to start with

a statically typed language and derive a gradually typed language

that satisfies the gradual guarantee. The main downside to these

approaches lies in their inflexibility: since the process in entirely

mechanical, the language designer must adhere to the predefined

framework. Many gradually typed languages do not fit into either

framework, e.g., Typed Racket [33, 34] and the semantics produced

is not always the desired one. Furthermore, while these frameworks

do prove graduality of the resulting languages, they do not show

the correctness of the equational theory, which is equally important

to sound gradual typing.

1.2.2 Double Categorical Semantics. New and Licata [27] devel-

oped an axiomatic account of the graduality relation on a call-by-

name cast calculus terms and showed that the graduality proof

could be modeled using semantics in certain kinds of double cate-
gories, categories internal to the category of categories. A double

category extends a category with a second notion of morphism, of-

ten a notion of “relation” to be paired with the notion of functional

morphism, as well as a notion of functional morphisms preserv-

ing relations. In gradual typing the notion of relation models type

precision and the squares model the term precision relation. This

approach was influenced by the semantics of parametricity using

reflexive graph categories [10, 16, 19]: reflexive graph categories

are essentially double categories without a notion of relational

composition. In addition to capturing the notions of type and term

precision, the double categorical approach allows for a universal
property for casts: upcasts are the universal way to turn a relation

arrow into a function in a forward direction and downcasts are

the dual universal arrow. Later, New, Licata and Ahmed [28] ex-

tended this axiomatic treatment from call-by-name to call-by-value

as well by giving an axiomatic theory of type and term precision in

call-by-push-value. This left implicit any connection to a “double

call-by-push-value”, which we make explicit in Section 4.

With this notion of abstract categorical model in hand, denota-

tional semantics is then the work of constructing concrete mod-

els that exhibit the categorical construction. New and Licata [27]

present such a model using categories of 𝜔-CPOs, and this model

was extended by Lennon-Bertrand, Maillard, Tabareau and Tan-

ter to prove graduality of a gradual dependently typed calculus

CastCIC
G
. This domain-theoretic approach meets our criteria of

being a semantic framework for proving graduality, but suffers from

the limitations of classical domain theory: the inability to model

viciously self-referential structures such as higher-order extensi-

ble state and similar features such as runtime-extensible dynamic

types. Since these features are quite common in dynamically typed

languages, we seek a new denotational framework that can model

these type system features.

The standard alternative to domain theory that scales to essen-

tially arbitrary self-referential definitions is step-indexing or its

synthetic form of guarded recursion. A series of works [24, 26, 28]

developed step-indexed logical relations models of gradually typed

languages based on operational semantics. Unlike classical do-

main theory, such step-indexed techniques are capable of mod-

eling higher-order store and runtime-extensible dynamic types

[1, 2, 23, 26]. However, their proof developments are highly repet-

itive and technical, with each development formulating a logical

relation from first-principles and proving many of the same tedious

lemmas without reusable mathematical abstractions. Our goal in

the current work is to extract these reusable mathematical prin-

ciples from these explicit step-indexed to make formalization of

realistic gradual languages tractible.

An alternative approach, which we investigate in this paper, is

provided by synthetic guarded domain theory[5]. The techniques of
synthetic guarded domain theory allow us to internalize the step-

indexed reasoning normally required in logical relations proofs of

graduality, ultimately allowing us to specify the logical relation in

a manner that looks nearly identical to a typical, non-step-indexed

logical relation. In fact, guarded domain theory goes further, al-

lowing us to define step-indexed denotational semantics not just
step-indexed relations, just as easily as constructing an ordinary

set-theoretic semantics.

In this paper, we develop an adequate denotational semantics

that satisfies graduality and soundness of the equational theory of

cast calculi using the techniques of SGDT. Our longer-term goal

is to mechanize these proofs in a reusable way in the Guarded

Cubical Agda proof assistant, thereby providing a framework to

use to more easily and conveniently prove that existing languages

satisfy graduality and have sound equational theories. Moreover,

Denotational Semantics of Gradual Typing using Synthetic Guarded Domain Theory Woodstock ’18, June 03–05, 2018, Woodstock, NY

the aim is for designers of new languages to utilize the framework

to facilitate the design of new provably-correct gradually-typed

languages with more complex features.

1.3 Contributions
The main contribution of this work is a categorical and denotational

semantics for gradually typed langauges that models not just the

term language but the graduality property as well.

(1) First, we give a simple abstract categorical model of GTT

using CBPV double categories.

(2) Next, we modify this semantics to develop reflexive graph-

and double categorical models that abstract over the details of

step-indexed models, and provide a method for constructing

such models.

(3) We instantiate the abstract construction to provide a concrete

semantics in informal guarded type theory.

(4) We prove that the resulting denotational model is adequate
for the graduality property: a closed term precision𝑀 ⊑ 𝑁 :

Nat has the expected semantics, that𝑀 errors or𝑀 and 𝑁

have the same extensional behavior.

2 BACKGROUND ON GUARDED DOMAIN
THEORY

Oneway to avoid the tedious reasoning associatedwith step-indexing

is to work axiomatically inside of a logical system that can reason

about non-well-founded recursive constructions while abstracting

away the specific details of step-indexing required if we were work-

ing analytically. The system that proves useful for this purpose

is called synthetic guarded domain theory, or SGDT for short. We

provide a brief overview here, but more details can be found in [5].

SGDT offers a synthetic approach to domain theory that allows

for guarded recursion to be expressed syntactically via a type con-

structor▷: Type→ Type (pronounced “later”). The use of a modal-

ity to express guarded recursion was introduced by Nakano [22].

Given a type𝐴, the type▷ 𝐴 represents an element of type𝐴 that is

available one time step later. There is an operator next : 𝐴→▷ 𝐴

that “delays” an element available now to make it available later.

We will use a tilde to denote a term of type ▷ 𝐴, e.g., �̃� .

There is a guarded fixpoint operator

fix : ∀𝑇, (▷ 𝑇 → 𝑇) → 𝑇 .

That is, to construct a term of type𝑇 , it suffices to assume that we

have access to such a term “later” and use that to help us build a term

“now”. This operator satisfies the axiom that fix𝑓 = 𝑓 (next(fix𝑓)).
In particular, this axiom applies to propositions 𝑃 : Prop; proving a
statement in this manner is known as Löb-induction.

The operators ▷, next, and fix described above can be indexed

by objects called clocks. A clock serves as a reference relative to

which steps are counted. For instance, given a clock 𝑘 and type 𝑇 ,

the type ▷𝑘 𝑇 represents a value of type 𝑇 one unit of time in the

future according to clock 𝑘 . If we only ever had one clock, then

we would not need to bother defining this notion. However, the

notion of clock quantification is crucial for encoding coinductive

types using guarded recursion, an idea first introduced by Atkey

and McBride [3].

Most of the developments in this paper will take place in the

context of a single clock 𝑘 , but later on, we will need to make use

of clock quantification.

2.1 Ticked Cubical Type Theory
Ticked Cubical Type Theory [21] is an extension of Cubical Type

Theory [8] in which there is an additional sort called ticks. Given
a clock 𝑘 , a tick 𝑡 : tick𝑘 serves as evidence that one unit of time

has passed according to the clock 𝑘 . The type ▷ 𝐴 is represented

as a function from ticks of a clock 𝑘 to 𝐴. The type 𝐴 is allowed

to depend on 𝑡 , in which case we write ▷𝑘
𝑡 𝐴 to emphasize the

dependence.

The rules for tick abstraction and application are similar to those

of dependent Π types. In particular, if we have a term 𝑀 of type

▷𝑘 𝐴, and we have available in the context a tick 𝑡 ′ : tick𝑘 , then we
can apply the tick to𝑀 to get a term𝑀 [𝑡 ′] : 𝐴[𝑡 ′/𝑡]. We will also

write tick application as𝑀𝑡 . Conversely, if in a context Γ, 𝑡 : tick𝑘
we have that 𝑀 has type 𝐴, then in context Γ we have 𝜆𝑡 .𝑀 has

type ▷ 𝐴.

3 SYNTACTIC THEORY OF GRADUALLY
TYPED LAMBDA CALCULUS

Here we give an overview of a fairly standard cast calculus for

gradual typing along with its (in-)equational theory that capture

our desired notion of type-based reasoning and graduality. The

main departure from prior work is our explicit treatment of type

precision derivations and an equational theory of those derivations.

We give the basic syntax and select typing rules in Figure 1.

We include a dynamic type, a type of numbers, the call-by-value

function type 𝐴 ⇀ 𝐴′ and products. We include a syntax for type
precision derivations 𝑐 : 𝐴 ⊑ 𝐴′, the typing is given in Figure 2.

Any type precision derivation 𝑐 : 𝐴 ⊑ 𝐴′ induces a pair of casts,
the upcast ⟨: ↢ 𝑐⟩𝐴 ⇀ 𝐴′ and the downcast ⟨𝑐 ↞ :⟩𝐴′ ⇀ 𝐴. The

syntactic intuition is that 𝑐 is a proof that 𝐴 is “less dynamic” than

𝐴′. Semantically, this gives us coercions back and forth where the

upcast is (to a first-order) a pure function whereas the downcast

can fail. These casts are inserted automatically in an elaboration

from a surface language. In this work, we are focused on semantic

aspects and so elide these standard details. The syntax of precision

derivations includes reflexivity 𝑟 (𝐴) and transitivity 𝑐𝑐′ as well as
monotonicity 𝑐 ⇀ 𝑐′ and 𝑐 × 𝑐′ that are covariant in all arguments

and finally generators InjN, Inj→, Inj× that correspond to the type

tags of our dynamic type. We additionally impose an equational

theory 𝑐 ≡ 𝑐′ on the derivations that implies that the corresponding

casts are weakly bisimilar in the semantics. We impose category

axioms for the reflexivity and transitivity and functoriality for the

monotonicity rules. We note the following two admissible prin-

ciples: any two derivations 𝑐, 𝑐′ : 𝐴 ⊑ 𝐴′ of the same fact are

equivalent 𝑐 ≡ 𝑐′ and for any𝐴, there is a derivation dyn(𝐴) : 𝐴 ⊑?.
That is, ? is the “most dynamic” type.

Next, we consider the axiomatic (in)equational reasoning prin-

ciples for terms: 𝛽𝜂 equality and term precision in Figure 3. We

include standard CBV 𝛽𝜂 rules for function and product types, as

well as equations stating that casts are given functorially. Next, we

have term precision, an extension of type precision to terms. The

form of the term precision rule is Δ ⊢ 𝑀 ⊑ 𝑀′ : 𝑐 where Δ is a

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini, Tingting Ding, and Max S. New

Types 𝐴 ::= Nat | ? | 𝐴 ⇀ 𝐴′ | 𝐴 ×𝐴′
Type Precision 𝑐 ::= 𝑟 (𝐴) | Inj→ | InjN | Inj× | 𝑐 ⇀ 𝑐′ | 𝑐 × 𝑐′

Values 𝑉 ::= up 𝑐 𝑉 | zro | suc𝑉 | 𝜆𝑥 .𝑀 | (𝑉 ,𝑉 ′)
Terms𝑀, 𝑁 ::= ℧ | up 𝑐 𝑀 | dn 𝑐 𝑀 | zro | suc𝑀 | 𝜆𝑥.𝑀

| 𝑀 𝑁 | (𝑀, 𝑁) | let (𝑥,𝑦) = 𝑀 in 𝑁

Contexts Γ ::= · | Γ, 𝑥 : 𝐴

Ctx Precision Δ ::= · | Δ, 𝑥 : 𝑐

Γ ⊢ 𝑀 : 𝐴 𝑐 : 𝐴 ⊑ 𝐴′

Γ ⊢ up 𝑐 𝑀 : 𝐴′
Γ ⊢ 𝑁 : 𝐴′ 𝑐 : 𝐴 ⊑ 𝐴′

Γ ⊢ dn 𝑐 𝑁𝐴

Γ ⊢ ℧ : 𝐴

Figure 1: GTLC Cast Calculus Syntax

𝑟 (𝐴) : 𝐴 ⊑ 𝐴
𝑐 : 𝐴 ⊑ 𝐴′ 𝑐′ : 𝐴′ ⊑ 𝐴′′

𝑐𝑐′ : 𝐴 ⊑ 𝐴′′

Inj→ : 𝐷 ⇀ 𝐷 ⊑ 𝐷 InjN : Nat ⊑ 𝐷 Inj→ : 𝐷 × 𝐷 ⊑ 𝐷

𝑐𝑖 : 𝐴𝑖 ⊑ 𝐴′𝑖 𝑐𝑜 : 𝐴𝑜 ⊑ 𝐴′𝑜
𝑐𝑖 ⇀ 𝑐𝑜 : (𝐴𝑖 ⇀ 𝐴𝑜) ⊑ (𝐴′𝑖 ⇀ 𝐴′𝑜)

𝑐1 : 𝐴1 ⊑ 𝐴′
1

𝑐2 : 𝐴2 ⊑ 𝐴′
2

𝑐1 × 𝑐2 : (𝐴1 ×𝐴2) ⊑ (𝐴′1 ×𝐴
′
2
)

𝑟 (𝐴)𝑐 ≡ 𝑐 𝑐 ≡ 𝑐𝑟 (𝐴′)

𝑐 (𝑐′𝑐′′) ≡ (𝑐𝑐′)𝑐′′ 𝑟 (𝐴𝑖 ⇀ 𝐴𝑜) ≡ 𝑟 (𝐴𝑖) ⇀ 𝑟 (𝐴𝑜)

𝑟 (𝐴1 ×𝐴2) ≡ 𝑟 (𝐴1) × 𝑟 (𝐴2)

(𝑐𝑖 ⇀ 𝑐𝑜) (𝑐′𝑖 ⇀ 𝑐′𝑜) ≡ (𝑐𝑖𝑐′𝑖 ⇀ 𝑐𝑜𝑐
′
𝑜)

(𝑐1 × 𝑐2) (𝑐′1 × 𝑐
′
2
) ≡ (𝑐1𝑐′1 × 𝑐2𝑐

′
2
)

Figure 2: Type Precision Derivations and equational theory

context where variables are assigned to type precision derivations.

The judgment is only well formed when every use of 𝑥 : 𝑐′ for
𝑐 : 𝐴 ⊑ 𝐴′ is used with type 𝐴 in 𝑀 and 𝐴′ in 𝑀′ and similarly

the output types match 𝑐 . We elide the congruence rules for every

type constructor, e.g., that𝑀 ⊑ 𝑀′ and 𝑁 ⊑ 𝑁 ′ that𝑀 𝑁 ⊑ 𝑀′ 𝑁 ′.
With such congruence rules, reflexivity𝑀 ⊑ 𝑀 is admissible. Tran-

sitivity, on the other hand, is intentionally not taken as a primitive

rule, matching the original formulation of the dynamic gradual

guarantee. We include a rule that says that equivalent type pre-

cision derivations 𝑐 ≡ 𝑐′ are equivalent for the purposes of term
precision. The next rule is the retraction principle, which states

that a downcast after an upcast is equivalent to doing nothing at

all, since intuitively the upcasted value should already satisfy the

type. Here ⊒⊑ means we require each is ⊑ the other, with reflexiv-

ity precision derivations. Finally, we include 4 rules for reasoning

about casts. Intuitively these say that the upcast is a kind of least
upper bound and dually that the downcast is a greatest lower bound.
These principles have been shown in prior work to imply that the

(𝜆𝑥.𝑀) (𝑉) = 𝑀 [𝑉 /𝑥] (𝑉 : 𝐴 ⇀ 𝐴′) = 𝜆𝑥.𝑉 𝑥

let (𝑥,𝑦) = (𝑉 ,𝑉 ′) in 𝑁 = 𝑁 [𝑉 /𝑥,𝑉 ′/𝑦]

𝑀 [𝑉 : 𝐴 ×𝐴′/𝑝] = let (𝑥,𝑦) = 𝑝 in𝑀 [(𝑥,𝑦)/𝑝]

up (𝑟 (𝐴))𝑀 = 𝑀 up 𝑐′ up 𝑐 𝑀 = up 𝑐𝑐′𝑀 dn (𝑟 (𝐴))𝑀 = 𝑀

dn 𝑐 dn 𝑐′𝑀 = dn 𝑐𝑐′𝑀
Δ ⊢ 𝑀 ⊑ 𝑀′ : 𝑐 𝑐 ≡ 𝑐′

Δ ⊢ 𝑀 ⊑ 𝑀′ : 𝑐′

Δ ⊢ ℧ ⊑ 𝑀 : 𝑐 dn 𝑐 up 𝑐 𝑀 ⊒⊑ 𝑀

𝑀 ⊑ 𝑀′ : 𝑐𝑐𝑟

up 𝑐 𝑀 ⊑ 𝑀′ : 𝑐𝑟
UpL

𝑀 ⊑ 𝑀′ : 𝑐𝑙
𝑀 ⊑ up 𝑐 𝑀′ : 𝑐𝑙𝑐

UpR

𝑀 ⊑ 𝑀′ : 𝑐𝑟

dn 𝑐 𝑀 ⊑ 𝑀′ : 𝑐𝑐𝑟
DnL

𝑀 ⊑ 𝑀′ : 𝑐𝑙𝑐

𝑀 ⊑ dn 𝑐 𝑀′ : 𝑐𝑙
DnR

Figure 3: Equality and Term Precision Rules (Selected)

behavior of functorial lifts such as 𝑐 ⇀ 𝑐′ and 𝑐 × 𝑐′ are given by

functorial actions [27, 28].

In the remainder of this article, we seek to develop a composi-

tional semantics of this calculus that is adequate for graduality. This
means we should have a semantic relation ⊑ such that if𝑀 ⊑ 𝑀′

then ⟦𝑀⟧ ⊑ ⟦𝑀′⟧ satisfying the following properties for closed

terms of type Nat:

(1) ⟦𝑛⟧ ⊒⊑ ⟦𝑛′⟧ if and only if 𝑛 = 𝑛′ for natural numbers 𝑛, 𝑛′.
(2) ⟦𝑛⟧, ⟦℧⟧, ⟦Ω⟧ are all different (not ⊒⊑), where Ω is a di-

verging term.

(3) If ⟦𝑀⟧ ⊑ ⟦𝑀′⟧ then
• If ⟦𝑀⟧ ⊒⊑ ⟦𝑛⟧ then ⟦𝑀′⟧ ⊒⊑ ⟦𝑛⟧
• If ⟦𝑀′⟧ ⊒⊑ ⟦℧⟧ then ⟦𝑀⟧ ⊒⊑ ⟦℧⟧
• If ⟦𝑀′⟧ ⊒⊑ ⟦𝑛⟧ then ⟦𝑀⟧ ⊒⊑ ⟦𝑛⟧ or ⟦𝑀⟧ ⊒⊑ ⟦℧⟧

The first two conditions ensure that our notions of distinct result

of a program are all preserved by the semantics. The last intuitively

states that if𝑀 has a non-erroring behavior, then𝑀′ exhibits the
same behavior.

4 IDEALIZED DOUBLE CATEGORICAL
MODELS OF GRADUALITY

In order to organize our construction of denotational models we

first develop sufficient abstract categorical semantics of gradually

typed languages. We start by modeling the type and term structure

of gradual typing and then extend this to type and term precision.

Gradually typed languages inherently involve computational ef-

fects of errors and non-termination and typically in practice many

others such as mutable state and I/O. To model this cleanly cate-

gorically, we follow New, Licata and Ahmed’s GTT calculus and

base our models off of Levy’s Call-by-push-value (CBPV) calculus

which is a standard model of effectful programming [18]. There are

several notions of model of CBPV from the literature with varying

requirements of which connectives are present [9, 11, 18], we will

Denotational Semantics of Gradual Typing using Synthetic Guarded Domain Theory Woodstock ’18, June 03–05, 2018, Woodstock, NY

use a variant which models precisely the connectives we require

and no more (1,×, 𝐹 ,𝑈 ,→)
1
.

(1) A cartesian categoryV and a category E.
(2) An action ofV𝑜𝑝

(with theV cartesian product as monoidal

structure) on E. We write this with an arrow 𝐴 → 𝐵. This

means we have natural isomorphisms 𝛼 : 𝐴1 ×𝐴2 → 𝐵 �
𝐴2 → (𝐴1 → 𝐵) and 𝑖 : 1→ 𝐵 � 𝐵 satisfying pentagon and

triangle identities[17].

(3) 𝐹 ⊣ 𝑈 where 𝑈 : E → V such that 𝑈 “preserves powering”

in that every 𝑈 (𝐴 → 𝐵) is an exponential of 𝑈𝐵 by 𝐴 and

that𝑈𝛼 and𝑈𝑖 are mapped to the canonical isomorphisms

for exponentials.

Example 4.1. Given a strong monad 𝑇 on a bicartesian closed

category V , we can extend this to a CBPV model by defining E
to be the categoryV𝑇

of algebras of the monad, defining 𝐴→ 𝐵

as the powering of algebras, 𝐹 as the free algebra and 𝑈 as the

underlying object functor.

To additionally model the error terms, we add a requirement

that there is a natural transformation ℧ : 1 → 𝑈 . The naturality

requirement encodes that strict morphisms (e.g., the denotations of

evaluation contexts) preserve errors.

We can then model CBV terms and types in a straightforward

adaptation of Levy’s interpretation of CBV in CBPV. We interpret

types𝐴 as objects𝐴 ∈ V and CBV terms Γ ⊢ 𝑀 : 𝐴 as morphism of

any of the equivalent forms E(𝐹 (×Γ), 𝐹 (𝐴)) � V(×Γ ⊢ 𝑈𝐹 (𝐴)) �
E(𝐹 (1), Γ → 𝐹 (𝐴)). The most interesting type translation is the

CBV function type:𝐴 ⇀ 𝐴′ = 𝑈 (𝐴→ 𝐹𝐴′). Such a model validates

all type-based equational reasoning, i.e., 𝛽𝜂 equality, and models

the introduction and elimination rules for CBV. Thus a CBPVmodel

is sufficient to interpret the CBV term language. We will require

additional structure to interpret the precision and type casts.

4.1 Double Categorical Semantics of Graduality
New and Licata modeled the graduality and type casts for call-by-

name gradual typing using double categories, which are defined to

be categories internal to the category of categories. That is, a double

category C consists of a category C𝑜 of “objects and function mor-

phisms” and a category C𝑠𝑞 of “relation morphisms and squares”

with functors (reflexive relation) 𝑟 : 𝐶𝑜 → 𝐶𝑠𝑞 and (source and tar-

get) 𝑠, 𝑡 : 𝐶𝑠𝑞 → 𝐶𝑜 satisfying 𝑠𝑟 = 𝑡𝑟 = id as well as a composition

operation 𝑐 : 𝐶𝑠𝑞 ×𝑠,𝑡 𝐶𝑠𝑞 → 𝐶𝑠𝑞 respecting source and target. This

models an abstract notion of functions and relations. For notation,

we write function morphisms as 𝑓 : 𝐴→ 𝐵 and relation morphisms

as 𝑐 : 𝐴 ◦−• 𝐵 where 𝑐 ∈ 𝐶𝑠𝑞 and 𝑠 (𝑐) = 𝐴 and 𝑡 (𝑐) = 𝐵. Finally a

morphism 𝛼 from 𝑐 to 𝑑 with 𝑠 (𝛼) = 𝑓 and 𝑠 (𝛽) = 𝑔 is visualized as

𝐴 𝐵

𝐴′ 𝐵′

𝑓 𝑔

𝑐p

𝑑
p

And is thought of as an abstraction of the notion of relatedness

of functions: functions take related inputs to related outputs. The

1
It is essential in this case that we do not require a cartesian closed category of values

as there is no way to implement casts for an exponential in general.

composition operations and functoriality give us a notion of com-

position of relations as well as functions and vertical and horizontal

composition of squares. In this work we will be chiefly interested

in locally thin double categories, that is, double categories where

there is at most one square for any 𝑓 , 𝑐, 𝑔, 𝑑 . In this case we use the

notation 𝑓 ≤𝑐,𝑑 𝑔 to mean that a square like the above exists.

New, Licata and Ahmed [28] extended the axiomatic syntax to

call-by-push-value but did not analyze the structure categorically.

We fill in this missing analysis now: a model of the congruence

rules of their system can be given by a locally thin “double CBPV

model”, which we define as a category internal to the category of

CBPV models and strict homomorphisms of CBPV models
2
. A strict

homomorphism of CBPV models from (V, E, . . .) to (V′, E′, . . .)
consists of functors 𝐺𝑣 : V → V′ and 𝐺𝑒 : E → E′ that strictly
preserve all CBPV constructions, see the appendix for a more de-

tailed definition. We call this a strict morphism in contrast to a

lax morphism, which only preserves CBPV constructions up to

transformation. Some of the data of a double CBPV model can be

visualized as follows:

V𝑠𝑞 E𝑠𝑞

V𝑓 E𝑓

𝐹𝑓

𝑈𝑓

𝐹𝑠𝑞

𝑈𝑠𝑞

𝑟V 𝑠V𝑡V 𝑠E𝑡E 𝑟E

⊥

⊥

Type precision 𝐴 ⊑ 𝐴′ is interpreted as a relation morphism 𝑐𝐴 :

𝐴 ◦−• 𝐴′ in V𝑠𝑞 , and term precision Γ ⊑ Γ′ ⊢ 𝑀 ⊑ 𝑀′ : 𝐴 ⊑ 𝐴′

is interpreted as a square 𝑀 ⊑𝑐Γ,𝑈 𝐹𝑐𝐴 𝑀′. The fact that 𝑡, 𝑟 and

the composition are all given by strict CBPV homomorphisms says

that all the type constructors lift to precision (monotonicity of type

constructors) as well as all term constructors (congruence). Further,

𝑟 and composition being strict homomorphisms implies that all

type constructors strictly preserve the identity relation (identity

extension) and composition.

Next, to model type casts, their model further requires that every

value relation 𝑐 : 𝐴 ◦−• 𝐴′ is left representable by a function 𝑢𝑐 :

𝐴 → 𝐴′ and every computation relation 𝑑 : 𝐵 ◦−• 𝐵′ is right
representable by a function 𝑑𝑐 : 𝐵′ → 𝐵. In a locally thin double

category, these are defined as follows:

Definition 4.2. 𝑐 : 𝐴 ◦−• 𝐵 is left representable by 𝑓 : 𝐴→ 𝐵 if

𝑓 ⊑𝑐
𝑟 (𝐵) id and id ⊑𝑟 (𝐴)𝑐 𝑓 .

Dually, 𝑐 : 𝐴 ◦−• 𝐵 is right representable by 𝑔 : 𝐵 → 𝐴 if

id ⊑𝑐
𝑟 (𝐴) 𝑔 and 𝑔 ⊑𝑟 (𝐵)𝑐 id.

These rules are sufficient to model the UpL/UpR/DnL/DnR rules

for casts. Additionally, since representable morphisms compose

and so the compositionality of casts comes for free. However, the

retraction property must be added as an additional axiom to the

model. To model the error being a least element we add the re-

quirement that ℧◦! ⊑𝑟 (𝐴)
𝑟 (𝑈𝐵) 𝑓 holds for all 𝑓 : V(𝐴, 𝐵). Finally, the

2
it may be possible to also define this as a notion of CBPV model internal to some

structured 2-category of categories, but the authors are not aware of any such definition

of an internal CBPV model

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini, Tingting Ding, and Max S. New

dynamic type can be modeled as an arbitrary value type 𝐷 with

arbitrary relations Nat ◦−• 𝐷 and 𝐷 ⇀ 𝐷 ◦−• 𝐷 and 𝐷 × 𝐷 ◦−• 𝐷
(or whatever basic type cases are required).

Example 4.3. (Adapted from [27]): Define a double CBPV model

where V is the category of predomain preorders: sets with an

𝜔-CPO structure ≤ as well as a poset structure ⊑. Functional mor-

phisms are given by ≤-continuous and ⊑-monotone functions. Then

define E to be the category of pointed domain preorders which are

domain preorders with least elements⊥ for ≤ and℧ for ⊑ such that
⊥ is ⊑-maximal, and morphisms are as before but preserve ⊥ and

℧. This can be extended to a CBPV model with forgetful functor

𝑈 : E → V . 𝐷 can be defined by solving a domain equation.

This can be extended to a double CBPV model by defining a

value relation 𝐴 ◦−• 𝐴′ to be a ⊑-embedding: a morphism 𝑒 :

𝐴 → 𝐴′ that is injective and such that 𝐹𝑒 : 𝐹𝐴 → 𝐹𝐴′ has a
right adjoint (with respect to ⊑) and a square 𝑓 ⊑𝑒

𝑒′ 𝑓
′ = 𝑓 ◦ 𝑒 ⊑

𝑒′ ◦ 𝑓 . Similarly computation relations 𝐵 ◦−• 𝐵′ are defined to

be projections: morphisms 𝑝 : 𝐵′ → 𝐵 that are surjective and

𝑈𝑝 has a left adjoint, with squares defined similarly. A suitable

dynamic type can be constructed by solving a domain equation

𝐷 � Nat +𝑈 (𝐷 → 𝐹𝐷) + (𝐷 × 𝐷).

4.2 Weakening the Double Category Semantics
While the double categorical semantics can be satisfied with classi-

cal domain theoretic models, there are obstructions to developing a

semantics based on guarded recursion. While guarded type theory

makes construction of arbitrary guarded recursive definitions possi-

ble, it comes at a significant cost to reasoning: unfolding of recursive

definitions is explicit. In a denotational semantics, this means that

non-well-founded recursion must perform a kind of observable step.
This is a difficulty in proving graduality, which is a property that is

oblivious to the number of steps that a program takes. Therefore to

prove graduality we must impose a kind of weak bisimilarity rela-

tion on our programs to reason about step-independent relational

properties. However, here we arrive at the fundamental issue with

double categorical semantics using representable relations:

(1) When reasoning up to weak bisimilarity, transitive reasoning

is not possible, and so horizontal pasting of squares is not a

valid reasoning principle.

(2) When reasoning with observable computation steps, certain

casts take observable steps, and can no longer be modeled

using representable morphisms.

Our solution to this dilemma comes in two parts. Since graduality

ignores computational steps, the syntactic theory of gradualitymust

be modeled up to weak bisimilarity, where transitive reasoning

is not valid. For this purpose we develop a notion of extensional
model which weakens from double categories to a reflexive graph

categories, dropping the operation of horizontal pasting of squares,

but still maintaining a form of representability of relations.

However, transitive reasoning is essential for compositional se-

mantic constructions, and so we need to work with an interme-

diate notion of intensional model which is based on double cate-

gories, but where representability has to be weakened to “quasi-

representability”, a kind of representability up to observable steps.
To reason up to observable steps without using weak bisimilarity,

we develop a notion we call perturbations, certain terms that are

bisimilar to the identity but can be manipulated explicitly in con-

structions. We then show that the compositional construction of

casts from domain theoretic models can be adapted to this guarded

setting by incorporating some explicit manipulation of perturba-

tions. Finally, we show that taking an “extensional collapse” by

bisimilarity provides a model of the extensional theory, which can

then be used to model the global graduality property.

5 REVISED CATEGORICAL MODELS OF
GRADUALITY

Next, we develop our appropriate weakened notions of models of

graduality, which we divide into extensionalmodels, where ordering

is up to weak bisimilarity, and intensional models, where ordering

relates terms that considers computational steps to be observable.

We develop the notion of intensional model of gradual typing in

stages and show how to develop one from a base model of effectful

functions and relations.

5.1 Extensional Models of Gradual Typing
Since we lack transitivity of ordering when reasoning in guarded

type theory, our weakened notion of extensional model is based

on reflexive graph categories rather than double categories. This

means we lose the reasoning principle of horizontal pasting of

squares. We will still require a notion of composition of relations, to

model the transitivity of type precision. We note that without hori-

zontal pasting of squares, the notion of left/right representability of

squares is not sufficient to interpret the cast rules of gradual typing.

Instead we generalize the notion of representability to match the

syntactic rules in Section 3.

Let 𝑐 : 𝐴 ◦−• 𝐴′ and 𝑓 : 𝐴 → 𝐴′ in a reflexive graph category

with composition of relations. We say that 𝑐 is universally left-
representable by 𝑓 if for any 𝑐𝑙 : 𝐴𝑙 ◦−• 𝐴 and 𝑐𝑟 : 𝐴′ ◦−• 𝐴𝑟

we have 𝑓 ⊑𝑐𝑐𝑟𝑐𝑟 id and id ⊑𝑐𝑙𝑐𝑙𝑐 𝑓 . Dually, let 𝑑 : 𝐵 ◦−• 𝐵′ and
𝑔 : 𝐵′ → 𝐵. We say that 𝑑 is universally right-representable by 𝑔

if for any 𝑑𝑙 : 𝐵𝑙 ◦−• 𝐵 and 𝑑𝑟 : 𝐵′ ◦−• 𝐵𝑟 we have id ⊑𝑑𝑙𝑑
𝑑𝑙

𝜙

and 𝜙 ⊑𝑑𝑟
𝑑𝑑𝑟

id. In a reflexive graph category these are stronger

than the definitions of left/right representability since we can pick

𝑐𝑙 , 𝑐𝑟 , 𝑑𝑙 , 𝑑𝑟 to be the reflexive relations. In a double category these

are equivalent, but the equivalence uses horizontal pasting.

Additionally, while in the presence of horizontal pasting compo-

sitionality of representable morphisms is automatic, without this

principle we must require it explicitly. Finally, we explicitly add in

a requirement that the type constructors are functorial in the

In summary, an extensional model consists of:

(1) A locally thin reflexive graph internal to CBPV models.

(2) Composition of value and computation relations that form a

category with the reflexive relations as identity. Call these

categoriesV𝑟 , E𝑟
(3) Identity-on-objects functors up : V𝑟 →V𝑓 and dn : E𝑜𝑝𝑟 →
E𝑓 such that every up𝑐 universally left-represents 𝑐 and

every dn𝑑 universally represents 𝑑 .

Denotational Semantics of Gradual Typing using Synthetic Guarded Domain Theory Woodstock ’18, June 03–05, 2018, Woodstock, NY

(4) The CBPV connectives𝑈 , 𝐹,×,→ are all covariant functorial
on relations up to equivalence:𝑈 (𝑑𝑑′) ⊒⊑ 𝑈 (𝑑)𝑈 (𝑑′) etc.3
where 𝑐 ⊒⊑ 𝑐′ means id ⊑𝑐

𝑐′ id and id ⊑𝑐′𝑐 id.

(5) A natural transformation℧ : 1⇒ 𝑈 such that℧◦! ⊑𝑟 (𝐴)
𝑟 (𝑈𝐵) 𝑓

for any 𝑓 : 𝐴→ 𝑈𝐵

(6) Distinguished value type Nat with morphisms 𝑧 : V(1,Nat)
and 𝑠 : V(Nat,Nat).

(7) Distinguished value types 𝐷 with distinguished relations

Inj→ : 𝑈 (𝐷 → 𝐹𝐷) ◦−• 𝐷 and InjN : Nat ◦−• 𝐷 and

Inj× : 𝐷 × 𝐷 ◦−• 𝐷 each satisfying the retraction property

dn Inj⇀ () 𝐹 (up Inj⇀ ()) ⊒⊑ id.

This mathematical structure is sufficient to interpret the theory

of gradual typing in Section 3.

Definition 5.1. Given any extensional gradual typing model, we

interpret

(1) Each type 𝐴 as a value type, interpreting the base types and

× as their semantic analogues and ⟦𝐴 ⇀ 𝐴′⟧ as 𝑈 (⟦𝐴⟧ →
𝐹 (⟦𝐴′⟧)).

(2) Type precision derivations 𝑐 : 𝐴 ⊑ 𝐴′ are interpreted as

relation morphisms ⟦𝑐⟧ : ⟦𝐴⟧ ◦−• ⟦𝐴′⟧ in the obvious way.

Every equivalence axiom 𝑐 ≡ 𝑐′ implies that ⟦𝑐⟧ ⊒⊑ ⟦𝑐′⟧.
(3) Every term Γ ⊢ 𝑀 : 𝐴 is interpreted as a morphism ⟦𝑀⟧ :
V𝑓 (×⟦Γ⟧,𝑈 𝐹⟦𝐴⟧). Upcasts are interpreted as𝑈𝐹 (𝑢⟦𝑐⟧) and
downcasts as𝑈𝑑𝐹⟦𝑐⟧.

(4) If Δ ⊢ 𝑀 ⊑ 𝑀′ : 𝑐 then ⟦𝑀⟧ ⊑×⟦Δ⟧⟦𝑐⟧ ⟦𝑀′⟧ holds.

5.2 Intensional Models
An intensional model of gradual typing is defined similarly to an

extensional model, with a few key differences that will be dis-

cussed below. The starting point is similar to that of the exten-

sional model. This time, however, since we are working intension-

ally, the semantic denotation of term precision is transitive, so
we do have a horizontal composition operation on squares. Com-

pare this to the extensional case, where we could only compose

relations horizontally, not squares. We can specify this compactly

as a category internal to the category of CBPV models and lax

morphisms, where we require that the reflexivity, source, and tar-

get morphisms are strict. In particular, as in the extensional case,

there is a CBPV model of “objects”M𝑓 and a CBPV model of “ar-

rows”M𝑠𝑞 . There are strict CBPV morphisms 𝑟 : M𝑓 → M𝑠𝑞

and 𝑠, 𝑡 : M𝑠𝑞 → M𝑓 , just as before. But now, we also have

a CBPV morphism 𝑚 from the pullback M𝑠𝑞 ×𝑠=𝑡 M𝑠𝑞 to 𝑀𝑠𝑞 ,

i.e., “composition of arrows". In particular, this consists of a func-

tor𝑚V : V𝑠𝑞 ×𝑠V=𝑡V V𝑠𝑞 → V𝑠𝑞 for composition of value rela-

tions/squares, and a functor𝑚E : E𝑠𝑞×𝑠E=𝑡E E𝑠𝑞 → E𝑠𝑞 for compo-

sition of computation relations/squares. Furthermore, 𝑠 ◦𝑚 = 𝑠 ◦𝜋1
and 𝑡 ◦𝑚 = 𝑡 ◦ 𝜋2.

As in the extensional model, we also require the existence of a

natural transformation ℧ : 1⇒ 𝑈 such that ℧◦! ⊑𝑟 (𝐴)
𝑟 (𝑈𝐵) 𝑓 for any

𝑓 : 𝐴→ 𝑈𝐵, and a distinguished value type Nat with morphisms

𝑧 : V(1,Nat) and 𝑠 : V(Nat,Nat).

3
the reflexive graph structure already requires that these functors preserve identity

relations

5.2.1 Bisimilarity. Working intensionally means we need to take

into consideration the steps taken by terms. One consequence of

this is that we need a way to specify that two morphisms are the

same “up to delay”, i.e., they differ only in that one may wait more

than the other.

In particular, for any pair of objects 𝐴 and 𝐴′, inV𝑓 , we require

that there is a reflexive, symmetric relation ≈𝐴,𝐴′ on the hom-

set V𝑓 (𝐴,𝐴′), called the weak bisimilarity relation. Similarly for

the computation category: there is a reflexive, symmetric relation

≈𝐵,𝐵′ defined on each hom-set E𝑓 (𝐵, 𝐵′). Additionally, the weak
bisimilarity relation should respect composition: if 𝑓 ≈𝐴,𝐴′ 𝑓 ′ and
𝑔 ≈𝐴′,𝐴′′ 𝑔′, then 𝑔◦ 𝑓 ≈𝐴,𝐴′′ 𝑔′ ◦ 𝑓 ′, and likewise for computations.

Lastly, we require that for any computation object 𝐵, the hom-

setV𝑓 (𝑈𝐵,𝑈𝐵) contains a distinguished morphism 𝛿∗
𝑈𝐵

, such that

𝛿∗
𝑈𝐵
≈𝑈𝐵,𝑈𝐵 id𝑈𝐵 . Moreover, we require that these morphisms are

related in that for any𝑑 : 𝐵 ◦−• 𝐵′, we have a square 𝛿∗
𝑈𝐵
⊑𝑈𝑑
𝑈𝑑

𝛿∗
𝑈𝐵′ .

We also require that these morphisms commute with computation

morphisms, in the sense that for any 𝜙 ∈ E𝑓 (𝐵, 𝐵′) we have𝑈𝜙 ◦
𝛿∗
𝑈𝐵1

= 𝛿𝑈𝐵2
◦𝑈𝜙 . Given the existence of the morphisms 𝛿∗

𝑈𝐵
, we

can define a computation morphism 𝛿∗
𝐹𝐴
∈ E𝑓 (𝐹𝐴, 𝐹𝐴) for all𝐴 by

composing the unit 𝜂𝐴 ∈ V𝑓 (𝐴,𝑈 𝐹𝐴) with the morphism 𝛿∗
𝑈𝐹𝐴

∈
V𝑓 (𝑈𝐹𝐴,𝑈 𝐹𝐴), and then by the adjunction we get a computation

morphism 𝛿 ∈
𝐹𝐴
E𝑓 (𝐹𝐴, 𝐹𝐴). Moreover, we get a square 𝛿∗

𝐹𝐴
⊑𝐹𝑐
𝐹𝑐

𝛿∗
𝐹𝐴′ for all 𝑐 : 𝐴 ◦−• 𝐴.
Definition 5.2. A step-1 intensional model consists of all the data

of a step-0 intensional model along with:

• The existence of a reflexive, symmetric relation ≈ on the

hom-sets V𝑓 (𝐴,𝐴′) and E𝑓 (𝐵, 𝐵′) such that ≈ preserves

composition.

• The existence of a distinguished value morphism 𝛿∗
𝑈𝐵
≈

id𝑈𝐵 for each 𝐵.

• A square 𝛿∗
𝑈𝐵
⊑𝑈𝑑
𝑈𝑑

𝛿∗
𝑈𝐵′ for all 𝑑 : 𝐵 ◦−• 𝐵′.

• The commutativity condition 𝑈𝜙 ◦ 𝛿∗
𝑈𝐵1

= 𝛿𝑈𝐵2
◦ 𝑈𝜙 for

any 𝜙 ∈ E𝑓 (𝐵, 𝐵′).
5.2.2 Perturbations. A second consequence of working intension-

ally is that the squares in the representable properties must now

involve a notion of “delay" or “perturbation” in order to keep

the function morphisms on each side in lock-step. Intuitively, the

perturbations have no effect other than to cause the function to

which they are applied to “wait” in a specific manner. We formal-

ize this notion by requiring that for each object 𝐴 in V𝑓 , there

is a monoid of value perturbations 𝑃𝐴 and a homomorphism of

monoids ptb𝐴 : 𝑃𝐴 → {𝑓 ∈ V𝑓 (𝐴,𝐴) | 𝑓 ≈ id}. Similarly, for each

𝐵 : E𝑓 there is a monoid 𝑃 E
𝐵

of computation perturbations and a

homomorphism of monoids ptb𝐵 : 𝑃𝐵 → {𝑔 ∈ E𝑓 (𝐵, 𝐵) | 𝑔 ≈ id}.
Note that we require that all perturbations be weakly bisimilar

to the identity morphism, capturing the notion that they have no

effect other than to delay.

We will slightly abuse notation and refer to an endomorphism

𝑓 ∈ V𝑓 (𝐴,𝐴) as being “in” the monoid of perturbations, by which

we actually mean there is an element 𝑝 ∈ 𝑃𝐴 that is mapped to 𝑓

under the homomorphism.

We require that 𝛿∗
𝑈𝐵
∈ 𝑃𝑈𝐵 for all 𝐵, where 𝛿∗

𝑈𝐵
is the distin-

guished morphism that is required to be present in every hom-set

V𝑓 (𝑈𝐵,𝑈𝐵) per the definition of a step-1 model.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini, Tingting Ding, and Max S. New

The perturbations must be preserved by ×
k

×,→,

k→,𝑈 ,

k

𝑈 , 𝐹 , and
k

𝐹 . Perturbations must also satisfy a property that we call the “push-

pull” property, which is formulated as follows. Let 𝑐 : 𝐴 ◦−• 𝐴′.
Given a perturbation 𝛿 ∈ 𝑃𝐴 , there is a corresponding perturbation
push𝑐 (𝛿) ∈ 𝑃𝐴′ . Likewise, given 𝛿 ′ ∈ 𝑃𝐴′ there is a perturbation

pull𝑐 (𝛿 ′) ∈ 𝑃𝐴 . Moreover, push-pull states that there are squares

𝛿 ⊑𝑐𝑐 push𝑐 (𝛿) and pull𝑐 (𝛿 ′) ⊑𝑐𝑐 𝛿 ′.
The analogous property should also hold for computation rela-

tions and perturbations. The requirements are summarized below:

Definition 5.3. A step-2 model of intensional gradual typing con-

sists of all the data of a step-1 model plus:

(1) For each value type 𝐴, there is a monoid 𝑃𝐴 and a homomor-

phism of monoids ptb𝐴 : 𝑃𝐴 → {𝑓 ∈ V𝑓 (𝐴,𝐴) | 𝑓 ≈ id}.
(2) For each computation type 𝐵, there is a monoid 𝑃 E

𝐵
and a

homomorphism of monoids ptb𝐵 : 𝑃𝐵 → {𝑔 ∈ E𝑓 (𝐵, 𝐵) |
𝑔 ≈ id}.

(3) For all 𝐵, the distinguished endomorphism 𝛿∗
𝑈𝐵

is in 𝑃𝑈𝐵 .

(4) The functors ×,
k

×,→,
k→,𝑈 ,

k

𝑈 , 𝐹,
k

𝐹 preserve perturbations.

(5) The push-pull property holds for all 𝑐 : 𝐴 ◦−• 𝐴′ and all

𝑑 : 𝐵 ◦−• 𝐵′.

5.2.3 Behavior of Casts. As is the case in the extensional model,

there is a relationship between vertical (i.e., function) morphisms

and horizontal (i.e., relation) morphisms, but as mentioned above,

now there are perturbations involved in order to keep both sides

“in lock-step". We begin with a step-2 intensional model as defined

in the previous section, and provide the additional conditions that

axiomatize the behavior of casts. The precise definitions are as

follows.

First, let M be any double category with a notion of pertur-

bations, i.e., for any object 𝑋 inM there is a monoid 𝑃𝑋 with a

monoid homomorphism into the endomorphisms on 𝑋 .

Definition 5.4. Let 𝑅 be a horizontal morphism inM between

objects 𝑋 and 𝑌 . We say that 𝑅 is quasi-left-representable by a

vertical morphism 𝑓 inM(𝑋,𝑌) if there are perturbations 𝛿𝑙,𝑒
𝑅
∈ 𝑃𝑋

and 𝛿
𝑟,𝑒
𝑅
∈ 𝑃𝑌 such that there is a square UpL : 𝑓 ⊑𝑅

𝑟 (𝑌) 𝛿
𝑟,𝑒
𝑅

and a

square UpR : 𝛿
𝑙,𝑒
𝑅
⊑𝑟 (𝑋)
𝑅

Definition 5.5. Let 𝑅 be a horizontal morphism between 𝑋 and 𝑌 .

We say that 𝑅 is quasi-right-representable by 𝑓 ∈ M(𝑌,𝑋) if there
exist perturbations 𝛿

𝑙,𝑝

𝑅
∈ 𝑃𝑋 and 𝛿

𝑟,𝑝

𝑅
∈ 𝑃𝑌 such that we have a

square DnR : 𝛿
𝑙,𝑝

𝑅
⊑𝑅
𝑟 (𝑋) 𝑓 and a square DnL : 𝑓 ⊑𝑟 (𝑌)

𝑅
𝛿
𝑟,𝑝

𝑅
.

With these definitions, we return to the more specific setting of

a step-2 intensional modelM and specify the new requirements

for relations. We require that there are functors up : V𝑒 →V𝑓 and

dn : E𝑜𝑝𝑒 → E𝑓 Every value edge 𝑐 : 𝐴 ◦−• 𝐴′ must be quasi-left-

representable by up(𝑐), and every computation edge 𝑑 : 𝐵 ◦−• 𝐵′
is quasi-right-representable by dn(𝑑).

Besides the perturbations, one other difference between the ex-

tensional and intensional versions of the representability axioms

is that in the extensional setting, the rules build in the notion of

composition, whereas their intensional counterparts do not. In

the extensional setting, we do not have horizontal composition of

squares, which is required to derive the versions of the rules that

build in composition from the versions that do not. In the inten-

sional setting, we do have horizontal composition of squares, so

we can take the simpler versions as primitive and derive the ones

involving composition.

Lastly, we require that the model satisfy a weak version of func-

toriality for the CBPV connectives𝑈 , 𝐹,×,→. First, we will need a

definition:

Definition 5.6 (quasi-order-equivalence). Let 𝑐, 𝑐′ : 𝐴 ◦−• 𝐴′. We

say that 𝑐 and 𝑐′ are quasi-order-equivalent, written 𝑐 ≈ 𝑐′, if there
exist perturbations 𝛿𝑙

1
, 𝛿𝑙

2
∈ 𝑃V

𝐴
and 𝛿𝑟

1
, 𝛿𝑟

2
∈ 𝑃V

𝐴′ such that there is

a square 𝛿𝑙
1
⊑𝑐
𝑐′ 𝛿

𝑟
1
and a square 𝛿𝑙

2
⊑𝑐′𝑐 𝛿𝑟

2
. We make the analogous

definition for computation relations 𝑑,𝑑′ : 𝐵 ◦−• 𝐵′.

We require that the CBPV connectives 𝑈 , 𝐹,×,→ are quasi-
functorial on relations, which we specify as follows:

• 𝑈 (𝑑 • 𝑑′) ≈ 𝑈 (𝑑)𝑈 (𝑑′)
• 𝐹 (𝑐 • 𝑐′′) ≈ 𝐹 (𝑐)𝐹 (𝑐′)
• (𝑐𝑐′) → (𝑑𝑑′) ≈ (𝑐 → 𝑑) (𝑐′ → 𝑑′)
• (𝑐1𝑐′

1
) × (𝑐2𝑐′

2
) ≈ (𝑐1 × 𝑐2) (𝑐′

1
× 𝑐′

2
)

We summarize the requirements of a step-3 model below:

Definition 5.7. A step-3 intensional model consists of all the data
of a step-2 intensional model, such that additionally:

(1) There are functors up : V𝑒 →V𝑓 and dn : E𝑜𝑝𝑒 → E𝑓
(2) Every value edge 𝑐 : 𝐴 ◦−• 𝐴′ is quasi-left-representable

by up(𝑐) and every computation edge 𝑑 : 𝐵 ◦−• 𝐵′ is quasi-
right-representable by dn(𝑑).

(3) The CBPV connectives 𝑈 , 𝐹,×,→ are quasi-functorial on

relations.

5.2.4 The Dynamic Type. Now we can discuss what it means for

an intensional model to model the dynamic type.

Definition 5.8. A step-4 intensional model is a step-3 intensional

modelM such that:

(1) There is a distinguished value object 𝐷 ∈ Ob(V𝑓).
(2) There are distinguished value relations Inj→ : 𝑈 (𝐷 →

𝐹𝐷) ◦−• 𝐷 and InjN : Nat ◦−• 𝐷 and Inj× : 𝐷 × 𝐷 ◦−• 𝐷
each satisfying the retraction property up to bisimilarity.

5.3 Constructing an Extensional Model
In the previous section, we have given the definition of an inten-

sional model of gradual typing as a series of steps with each defini-

tion building on the previous one. Here, we discuss how to construct

an extensional model from an intensional model with dyn. We do

so in several phases, beginning with a step-1 intensional model

with dyn and ending with an extensional model. Moreover, this

construction ismodular, in that each phase of the construction does

not depend on the details of the previous ones.

5.3.1 Adding Perturbations. Suppose we have a step-1 intensional
modelM. Recall that a step-1 intensional model consists of a step-0

model (i.e., a category internal to the category of CBPV models),

along with the necessary categories and functors for bisimilarity

as discussed in Section 5.2.1. Further, recall that a step-2 model has

everything a step-1 model has, with the addition of perturbation

monoids 𝑃V
𝐴

for all 𝐴 and 𝑃 E
𝐵

for all 𝐵. Moreover, the push-pull

Denotational Semantics of Gradual Typing using Synthetic Guarded Domain Theory Woodstock ’18, June 03–05, 2018, Woodstock, NY

property must hold for all value relations 𝑐 and all computation

relations 𝑑 .

We claim that from a step-1 model, we can construct a step-2

model. The value objects of the model are defined to be triples

(𝐴, 𝑃𝐴, ptb𝐴) where 𝐴 is a value object inM, 𝑃𝐴 is a monoid and

ptb𝐴 is a homomorphism of monoids from 𝑃𝐴 to the endomor-

phisms on 𝐴 that are bisimilar to the identity. Likewise, computa-

tion objects are triples (𝐵, 𝑃𝐵, ptb𝐵). The morphisms are the same

as the morphisms ofM. A value relation between (𝐴, 𝑃𝐴, ptb𝐴) and
(𝐴′, 𝑃𝐴′ , ptb𝐴′) is given by a pair of a relation in 𝑐 and a push-pull
structure Π𝑐 specifying that that 𝑐 satisfies the push-pull prop-

erty. Computation relations are defined analogously. The squares

are the same as those of M. We define the action of the func-

tor 𝐹 on objects as 𝐹 (𝐴, 𝑃𝐴, ptb𝐴) = (𝐹𝐴,N × 𝑃𝐴, ptb𝐹𝐴) where
ptb𝐹𝐴 (𝑛, 𝑎) = (𝛿∗𝐹𝐴)

𝑛 ◦ 𝐹 (ptb𝐴 (𝑎)) (i.e., we use the distinguished
delaymorphism 𝛿∗

𝐹𝐴
). The action of𝑈 on objects is defined similarly,

where the perturbations are defined to be N × 𝑃𝐵 .
For the full details of the construction, see Lemma C.1 in the

Appendix.

5.3.2 AddingQuasi-Representability. Now suppose we have a step-

2 intensional modelM. We claim that we can construct a step-3

intensional modelM′. In the construction, the objects and mor-

phisms are the same as those ofM, and a value relation between 𝐴

and 𝐴′ consists of a triple (𝑐, 𝜌𝐿𝑐 , 𝜌𝑅𝐹𝑐) where 𝑐 : 𝐴 ◦−• 𝐴
′
is a rela-

tion inM, 𝜌𝐿𝑐 is a quasi-left-representation for 𝑐 (i.e., an embedding

𝑒𝑐 , perturbations 𝛿
𝑟,𝑒
𝑐 ∈ 𝑃𝐴′ and 𝛿

𝑙,𝑒
𝑐 ∈ 𝑃𝐴 , and the two relevant

squares), and similarly 𝜌𝑅
𝐹𝑐

is a quasi-right-representation for 𝐹𝑐 .

Computation relations are triples (𝑑, 𝜌𝑅
𝑑
, 𝜌𝐿

𝑈𝑑
) where 𝑑 : 𝐵 ◦−• 𝐵′,

𝜌𝑅
𝑑
is a quasi-right-representation for 𝑑 and 𝜌𝐿𝑈𝑑 is a quasi-left-

representation for𝑈𝑑 . The value and computation squares are the

same as those ofM. We then define composition of relations and

the action of the functors 𝐹 ,𝑈 , ×, and→.

For the full details of the construction, see Lemma C.7 in the

Appendix.

5.3.3 Constructing an Extensional Model. Finally, supposeM is a

step-4 intensional model (i.e., a step-3 model with an interpretation

of the dynamic type). We now describe how to build an extensional

model.

The idea is to define an extensional model whose squares are

the “bisimilarity-closure” of the squares of the provided intensional

modelM.

The categoriesV𝑓 , E𝑓 are the same as those ofM. Additionally,

the objects ofV𝑠𝑞 and E𝑠𝑞 , i.e., the value and computation relations,

are the same. The difference arises in the morphisms of V𝑠𝑞 and

E𝑠𝑞 , i.e., the commuting squares. In particular, a morphism 𝛼𝑒 ∈
V′𝑠𝑞 (𝑐𝑖 , 𝑐𝑜) with source 𝑓 and target 𝑔 is given by:

• a morphism 𝑓 ′ ∈ V𝑓 (𝐴𝑖 , 𝐴𝑜) with 𝑓 ≈ 𝑓 ′.
• a morphism 𝑔′ ∈ V𝑓 (𝐴′𝑖 , 𝐴

′
𝑜) with 𝑔 ≈ 𝑔′.

• a square 𝛼𝑖 ∈ V𝑠𝑞 (𝑐𝑖 , 𝑐𝑜) with source 𝑓 ′ and target 𝑔′.

Using our existing notation, we say that 𝑓 ≲𝑐𝑖
𝑐𝑜 𝑔 if there exist

𝑓 ′ and 𝑔′ such that

𝑓 ≈𝐴𝑖 ,𝐴𝑜
𝑓 ′ ⊑𝑐𝑖𝑐𝑜 𝑔′ ≈𝐴′

𝑖
,𝐴′𝑜 𝑔.

Wemake the analogous construction for the computation squares.

The proof that this indeed defines an extensional model is given

in the Appendix (see Section C.3).

6 CONSTRUCTING A CONCRETE MODEL
In this section, we build a concrete extensional model of gradual

typing. We begin by defining a step-1 intensional model, and then

apply the abstract constructions outlined in the previous section to

obtain an extensional model. We begin with some definitions:

Definition 6.1. A predomain 𝐴 consists of a set 𝐴 along with

two relations:

• A partial order ≤𝐴 .
• A reflexive, symmetric “bisimilarity” relation ≈𝐴 .

Given a predomain 𝐴, we can form the predomain ▷ 𝐴. The

underlying set is ▷ |𝐴| and the relation is defined in the obvious

way, i.e., 𝑥 ≤▷𝐴
˜𝑥 ′ iff ▷𝑡 (𝑥𝑡 ≤𝐴 ˜𝑥 ′𝑡). Likewise for bisimilarity.

We also give a predomain structure to the natural numbers N,
where both the ordering and the bisimiarity relation are equality.

Morphisms of predomains are functions between the underlying

sets that preserve the ordering and the bisimilarity relation. More

formally:

Definition 6.2. Let𝐴 and𝐴′ be predomains. Amorphism 𝑓 : 𝐴→
𝐴′ is a function between the underlying sets such that for all 𝑥, 𝑥 ′, if
𝑥 ≤𝐴 𝑥 ′, then 𝑓 (𝑥) ≤ 𝑓 (𝑥 ′), and if 𝑥 ≈𝐴 𝑥 ′, then 𝑓 (𝑥) ≈𝐴′ 𝑓 (𝑥 ′).

Definition 6.3. An error domain 𝐵 consists of a predomain 𝐵

along with the following data:

• A distinguished “error" element ℧𝐵 ∈ 𝐵
• A morphism of predomains 𝜃𝐵 : ▷ 𝐵 → 𝐵

For an error domain 𝐵, we define the predomain morphism

𝛿𝐵 := 𝜃𝐵 ◦ next. Morphisms of error domains are morphisms of the

underlying predomains that preserve the algebraic structure. More

formally:

Definition 6.4. Let 𝐵 and 𝐵′ be error domains. A morphism 𝜙 :

𝐵 ⊸ 𝐵′ is a morphism between the underlying predomains such

that:

(1) 𝜙 (℧𝐵) = ℧𝐵′

(2) 𝜙 (𝜃𝐵 (𝑥)) = 𝜃𝐵′ (𝜆𝑡 .𝜙 (𝑥𝑡))

We define a (monotone) relation on predomains 𝐴 and 𝐴′ to be

a relation on the underlying sets that is downward-closed under

≤𝐴 and upward-closed under ≤𝐴′ . More formally:

Definition 6.5. Let𝐴 and𝐴′ be predomains. A predomain relation
between 𝐴 and 𝐴′ is a relation 𝑅 between the underlying sets such

that:

(1) (Downward closure): For all 𝑥1, 𝑥2 ∈ 𝐴 and 𝑦 ∈ 𝐴′, if 𝑥1 ≤𝐴
𝑥2 and 𝑥2 𝑅 𝑦, then 𝑥1 𝑅 𝑦.

(2) (Upward closure): For all 𝑥 ∈ 𝐴 and 𝑦1, 𝑦2 ∈ 𝐴′, if 𝑥 𝑅 𝑦1 and
𝑦1 ≤𝐴′ 𝑦2, then 𝑥 𝑅 𝑦2.

Composition of relations on predomains is the usual relational

composition. Similarly, we define a (monotone) relation on error

domains to be a relation on the underlying predomains that respects

error and preserves 𝜃 .

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini, Tingting Ding, and Max S. New

Definition 6.6. Let 𝐵 and 𝐵′ be error domains. An error domain
relation between 𝐵 and 𝐵′ is a relation 𝑅 between the underlying

predomains such that

(1) (Respects error): For all 𝑦 ∈ 𝐵′, we have ℧𝐵 𝑅 𝑦.

(2) (Preserves 𝜃): For all 𝑥 in ▷ 𝐵 and 𝑦 ∈▷ 𝐵′, if ▷𝑡 (𝑥𝑡 𝑅 𝑦𝑡)
then 𝜃𝐵 (𝑥) 𝑅 𝜃𝐵′ (𝑦).

We define composition of error domain relations 𝑅 on 𝐵1 and 𝐵2
and 𝑆 on 𝐵2 and 𝐵3 to be the least relation containing 𝑅 and 𝑆 that

respects error and preserves 𝜃 . Specifically, it is defined inductively

by the following rules:

𝑏1 𝑅 𝑏2 𝑏2 𝑆 𝑏3

𝑏1 𝑅 ⊙ 𝑆 𝑏3
Comp

℧𝐵1
𝑅 ⊙ 𝑆 𝑏3

PresErr

▷𝑡 (˜𝑏1 𝑅 ⊙ 𝑆 ˜𝑏3)
𝜃𝐵1
(˜𝑏1) 𝑅 ⊙ 𝑆 𝜃𝐵3

(˜𝑏3)
PresTheta

We now describe the “commuting squares". Suppose we are given

predomains 𝐴𝑖 , 𝐴𝑜 , 𝐴
′
𝑖
, and 𝐴′𝑜 , relations 𝑅𝑖 : 𝐴𝑖 ◦−• 𝐴′𝑖 and 𝑅𝑜 :

𝐴𝑜 ◦−• 𝐴′𝑜 , and morphisms 𝑓 : 𝐴𝑖 → 𝐴𝑜 , 𝑓
′
: 𝐴′

𝑖
→ 𝐴′𝑜 Given a

square with these morphisms and relations, we say that the square

commutes, written 𝑓 ≤ 𝑓 ′, if for all 𝑥 ∈ 𝐴𝑖 and 𝑥
′ ∈ 𝐴′

𝑖
with 𝑥 𝑅𝑖 𝑥

′
,

we have 𝑓 (𝑥)𝑅𝑜 𝑓 ′ (𝑥 ′). We make the analogous definition for error

domains.

6.1 Guarded Lift Monad
The guarded error-lift monad 𝐿℧ takes a predomain 𝐴 to the error

domain 𝐿℧𝐴. It is defined
4
as follows :

𝐿℧𝐴 := | 𝜂 : 𝐴→ 𝐿℧𝐴 | ℧ : 𝐿℧𝐴 | 𝜃 : ▷ (𝐿℧𝐴) → 𝐿℧𝐴

This captures the intuition that a program may either return

a value, fail at run-time, or take one or more observable steps of

computation. Previous work has studied such a similar construct,

called the guarded lift monad [20]; our version here our version

augments it with the notion of error. Since we claimed that 𝐿℧𝐴

is a monad, we need to define the monadic operations and show

that they respect the monadic laws. The return is just 𝜂, and the

monadic extend is defined via guarded recursion by cases on the

input. Verifying that the monadic laws hold uses Löb-induction and

is straightforward.

There is a functor 𝑈 from error domains to predomains that

on objects simply returns the underlying predomain, and on mor-

phisms returns the underlying morphism of predomains. It is easily

verified that 𝐿℧𝐴 is the free error- and later-algebra on the predo-

main 𝐴, so we have that 𝐿℧ is left-adjoint to𝑈 .

The partial order ≤𝐿℧𝐴 is the lock-step error ordering defined

by guarded recursion as follows:

• 𝜂 𝑥 ≤𝐿℧𝐴 𝜂 𝑦 if 𝑥 ≤𝐴 𝑦.

• ℧ ≤𝐿℧𝐴 𝑙 for all 𝑙

• 𝜃 𝑟 ≤𝐿℧𝐴 𝜃 ˜𝑟 ′ if ▷𝑡 (𝑟𝑡 ≤𝐿℧𝐴 ˜𝑟 ′𝑡)
The idea is that two computations 𝑙 and 𝑙 ′ are related if they are in

lock-step with regard to their intensional behavior, up to 𝑙 erroring.

Given a relation 𝑅 : 𝐴 ◦−• 𝐴′, we define in an analogous manner

4
Formally, the lift monad 𝐿℧𝐴 is defined as the solution to the guarded recursive type

equation 𝐿℧𝐴 � 𝐴 + 1+ ▷ 𝐿℧𝐴.

a heterogeneous version of the lock-step error ordering between

𝐿℧𝑅 : 𝐿℧𝐴 ◦−• 𝐿℧𝐴′.
For a predomain 𝐴, we define a relation on 𝐿℧𝐴, called “weak

bisimilarity", written 𝑙 ≈ 𝑙 ′. Intuitively, we say 𝑙 ≈ 𝑙 ′ if they are

equivalent “up to delay”. The weak bisimilarity relation is defined

by guarded recursion as follows:

℧ ≈ ℧
𝜂 𝑥 ≈ 𝜂 𝑦 if 𝑥 ≈𝐴 𝑦

𝜃 𝑥 ≈ 𝜃 𝑦 if ▷𝑡 (𝑥𝑡 ≈ 𝑦𝑡)
𝜃 𝑥 ≈ ℧ if 𝜃 𝑥 = 𝛿𝑛 (℧) for some 𝑛

𝜃 𝑥 ≈ 𝜂 𝑦 if (𝜃 𝑥 = 𝛿𝑛 (𝜂 𝑥)) for some 𝑛 and 𝑥 ∈ 𝐴 such that 𝑥 ≈𝐴 𝑦

℧ ≈ 𝜃 𝑦 if 𝜃 𝑦 = 𝛿𝑛 (℧) for some 𝑛

𝜂 𝑥 ≈ 𝜃 𝑦 if (𝜃 𝑦 = 𝛿𝑛 (𝜂 𝑦)) for some 𝑛 and 𝑦 ∈ 𝐴 such that 𝑥 ≈𝐴 𝑦

When both sides are 𝜂, then we ensure that the underlying values

are related by the bisimilarity relation on 𝐴. When one side is a 𝜃

and the other is 𝜂𝑥 (i.e., one side steps), we stipulate that the 𝜃 -term

runs to 𝜂𝑦 where 𝑥 is bisimilar to 𝑦. Similarly when one side is 𝜃

and the other ℧. If both sides step, then we allow one time step to

pass and compare the resulting terms. In this way, the definition

captures the intuition of terms being equivalent up to delays.

Given predomains 𝐴 and 𝐴′, we can form the predomain of

predomain morphisms from 𝐴 to 𝐴′, denoted 𝐴⇒ 𝐴′.

• The ordering is defined by 𝑓 ≤𝐴⇒𝐴′ 𝑓
′
iff for all 𝑥 ∈ 𝐴, we

have 𝑓 (𝑥) ≤𝐴′ 𝑓 ′ (𝑥).
• The bisimilarity relation is defined by 𝑓 ≈𝐴⇒𝐴′ 𝑓

′
iff for all

𝑥, 𝑥 ′ ∈ 𝐴 with 𝑥 ≈𝐴 𝑥 ′, we have 𝑓 (𝑥) ≈𝐴′ 𝑓 ′ (𝑥 ′).

Given 𝑓 : 𝐴′
1
→ 𝐴1 and 𝑔 : 𝐴2 → 𝐴′

2
we define the predomain mor-

phism 𝑓 ⇒ 𝑔 : (𝐴1 ⇒ 𝐴2) → (𝐴′
1
⇒ 𝐴′

2
) by 𝜆ℎ.𝜆𝑥 ′ .𝑔(ℎ(𝑓 (𝑥 ′))).

We note that 𝐴⇒ 𝑈𝐵 carries a natural error domain structure

(in the below, the lambda is a meta-theoretic notation):

• The error is given by 𝜆𝑥.℧𝐵

• The 𝜃 operation is defined by

𝜃𝐴⇒𝑈𝐵 (˜𝑓) = 𝜆𝑥 .𝜃𝐵 (𝜆𝑡 . ˜𝑓𝑡 (𝑥)) .

Given a predomain𝐴 and error domain 𝐵, we define𝐴→ 𝐵 to be

the error domain such that𝑈 (𝐴→ 𝐵) = 𝐴⇒ 𝑈𝐵, and whose error

and 𝜃 operations are as defined above. We can define the functorial

action of→ on morphisms 𝑓 → 𝜙 in the obvious way. It is easily

verified that 𝐴→ 𝐵 is an exponential of𝑈𝐵 by 𝐴 in the category

of predomains and their morphisms.

Lastly, given a relation of predomains 𝑅 between 𝐴 and 𝐴′, and
a relation of error domains 𝑆 between 𝐵 and 𝐵′, we define the

relation 𝑅 → 𝑆 between 𝐴→ 𝐵 and 𝐴′ → 𝐵′ in the obvious way,

i.e., 𝑓 ∈ 𝐴 → 𝐵 is related to 𝑔 ∈ 𝐴′ → 𝐵′ iff for all 𝑥 ∈ 𝐴 and

𝑥 ′ ∈ 𝐴′ with 𝑥 𝑅 𝑥 ′, we have 𝑓 (𝑥) 𝑆 𝑔(𝑥 ′). One can verify that

this relation is indeed a relation of error domains in that it respects

error and preserves 𝜃 .

With all of the above data, we can form a step-1 intensional

model of gradual typing (See Definition 5.2).

Denotational Semantics of Gradual Typing using Synthetic Guarded Domain Theory Woodstock ’18, June 03–05, 2018, Woodstock, NY

6.2 The Dynamic Type
The predomain representing the dynamic type will be defined using

guarded recursion as the solution to the equation
5

𝐷 � N + (𝐷 × 𝐷) + ▷𝑈 (𝐷 → 𝐹𝐷) .

For the sake of clarity, we name the “constructors" nat, times, and

fun, respectively. We define 𝑒N : N→ 𝐷 to be the injection into the

first component of the sum, and 𝑒× : 𝐷 ×𝐷 → 𝐷 to be the injection

into the second component of the sum, and 𝑒→ : 𝑈 (𝐷 → 𝐹𝐷)
to be the morphism next followed by the injection into the third

component of the sum.

Explicitly, the ordering on 𝐷 is given by:

nat(𝑛) ≤ nat(𝑛′) ⇐⇒ 𝑛 = 𝑛′

times(𝑑1, 𝑑2) ≤ times(𝑑′
1
, 𝑑′

2
) ⇐⇒ 𝑑1 ≤ 𝑑2 and 𝑑

′
1
≤ 𝑑′

2

fun(˜𝑓) ≤ fun(˜𝑓 ′) ⇐⇒ ▷𝑡 (˜𝑓𝑡 ≤ ˜𝑓 ′𝑡)

We define a relation InjN : N ◦−• 𝐷 by (𝑛,𝑑) ∈ InjN iff 𝑒N ≤𝐷 𝑑 .

We similarly define Inj× : 𝐷 × 𝐷 ◦−• 𝐷 by ((𝑑1, 𝑑2), 𝑑) ∈ Inj×
iff 𝑒× (𝑑1, 𝑑2) ≤𝐷 𝑑 , and we define inj→ : 𝑈 (𝐷 → 𝐹𝐷) ◦−• 𝐷 by

(𝑓 , 𝑑) ∈ Inj→ iff 𝑒→ (𝑓) ≤𝐷 𝑑 .

Now we define the perturbations for 𝐷 . Recall from our con-

struction of a model with perturbations (Section 5.3.1) that for each

value type 𝐴 we associate a monoid 𝑃𝐴 of perturbations and a ho-

momorphism into the monoid of endomorphisms bisimilar to the

identity, and likewise for computation types. We define the per-

turbations for 𝐷 via least-fixpoint in the category of monoids as

𝑃𝐷 � (𝑃𝐷×𝐷) × 𝑃𝑈 (𝐷→𝐹𝐷) . Unfolding the definitions, this is the
same as 𝑃𝐷 � (𝑃𝐷 × 𝑃𝐷) × (N × 𝑃

𝑜𝑝

𝐷
× N × 𝑃𝐷). We now explain

how to interpret these perturbations as endomorphisms. We define

ptb𝐷 : 𝑃𝐷 → {𝑓 : 𝐷 → 𝐷 | 𝑓 ≈ id} below,

ptb𝐷 (𝑝times, 𝑝fun) = 𝜆𝑑.case 𝑑 of

| nat(𝑚) ↦→ nat(𝑚)
| times(𝑑1, 𝑑2) ↦→ times(ptb𝐷×𝐷 (𝑝times) (𝑑1, 𝑑2))

| fun(˜𝑓) ↦→ fun(𝜆𝑡 .ptb𝑈 (𝐷→𝐹𝐷) () (˜𝑓𝑡))

One can verify that this defines a homomorphism from 𝑃𝐷 →
{𝑓 : 𝐷 → 𝐷 : 𝑓 ≈ id}. We claim that the three relations InjN,

Inj× , and Inj→ satisfy the push-pull property. As an illustrative

case, we establish the push-pull property for the relation Inj→. We

define pull
Inj→

: 𝑃𝐷 → 𝑃𝑈 (𝐷→𝐹𝐷) bypullInj→ (𝑝times, 𝑝fun) = 𝑝
fun

,

i.e., we simply forget the other perturbation. We define push
Inj→

:

𝑃𝑈 (𝐷→𝐹𝐷) → 𝑃𝐷 by pushInj→ (𝑝fun) = (id, 𝑝fun). Showing that

the relevant squares commute is straightforward.

We next claim that the relations InjN, Inj× , and Inj→ are quasi-

left-representable, and that their lifts are quasi-right-representable.

Indeed, since the relations are functional, it is easy to see that they

are quasi-left-representable where the perturbations are taken to be

the identity. For quasi-right-representability, the most interesting

case is 𝐿℧ (Inj→). Defining the projection 𝑝Inj→ : 𝐹𝐷 → 𝐹𝑈 (𝐷 →

5
In this section, we write 𝐹 instead of 𝐿℧ so that the notation follows that of the

abstract model section.

𝐹𝐷) is equivalent to defining 𝑝′ : 𝐷 → 𝑈𝐹𝑈 (𝐷 → 𝐹𝐷). We define

𝑝′ = 𝜆𝑑.case 𝑑 of | nat(𝑚) ↦→ ℧
| times(𝑑1, 𝑑2) ↦→ ℧

| fun(˜𝑓) ↦→ 𝜃 (𝜆𝑡 .𝜂 (˜𝑓𝑡)).

We define 𝛿
𝑙,𝑝

𝐷
= 𝛿

𝑟,𝑝

𝐷
= 𝛿𝐹𝐷 . Then it is easy to show using the

definition of Inj→ that the squares for DnL and DnR commute. It is

also straightforward to establish the retraction property for each of

these three relations. In the case of Inj→, we have that the property

holds up to a delay.

Now that we have defined an intensional model with an interpre-

tation for the dynamic type, we can apply the abstract constructions

introduced in Section 5.3. Doing so, we obtain an extensional model

of gradual typing, where the squares are given by the “bisimilarity

closure” of the intensional error ordering.

6.3 Adequacy
In this section, we prove an adequacy result for the concrete exten-

sional model of GTT we obtained in the previous section. applying

the abstract constructions introduced in Section 5.3 to the concrete

model built in the previous section.

First we establish some notation. Fix a morphism 𝑓 : 1→ 𝐿℧N �
𝐿℧N. We write 𝑓 ↓ 𝑛 to mean that there exists 𝑚 such that 𝑓 =

𝛿𝑚 (𝜂𝑛) and 𝑓 ↓ ℧ to mean that there exists𝑚 such that 𝑓 = 𝛿𝑚 (℧).
Recall that ≲ denotes the relation on value morphisms defined

as the bisimilarity-closure of the intensional error-ordering on

morphisms. That is, we have 𝑓 ≲ 𝑔 iff there exists 𝑓 ′ and 𝑔′ with

𝑓 ≈𝐿℧N 𝑓 ′ ≤𝐿℧N 𝑔′ ≈𝐿℧N 𝑔.

Here ≤𝐿℧N is the lock-step error ordering, and ≈𝐿℧N is weak bisim-

ilarity. First observe that in this ordering, the semantics of error is

not equivalent to the semantics of the diverging term. The main

result we would like to show is as follows:

Lemma 6.7. If 𝑓 ≲ 𝑔 : 𝐿℧N, then:

• If 𝑓 ↓ 𝑛 then 𝑔 ↓ 𝑛.
• If 𝑔 ↓ ℧ then 𝑓 ↓ ℧.
• If 𝑔 ↓ 𝑛 then 𝑓 ↓ 𝑛 or 𝑓 ↓ ℧.

Unfortunately, this is actually not provable! Roughly speaking,

the issue is that this is a “global” result, and it is not possible to

prove such results inside of the guarded setting. In particular, if we

tried to prove the above result in the guarded setting, we would

run into a problem where we would have a natural number “stuck”

under a ▷, with no way to get out the underlying number. Thus,

to prove our adequacy result, we need to leave the guarded setting

and pass back to the more familiar, set-theoretic world with no

internal notion of step-indexing. We can do this using a process

known as clock quantification. Recall that all of the constructions
we have made in SGDT take place in the context of a clock 𝑘 . All

of our uses of the later modality and guarded recursion have taken

place with respect to this clock. For example, recall the definition

of the lift monad by guarded recursion. We can view this definition

as being parameterized by a clock 𝑘 : 𝐿𝑘
℧

: Type → Type. Then

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini, Tingting Ding, and Max S. New

for 𝑋 satisfying a certain technical requirement known as clock-
irrelevance, 6 we can define the “global lift” monad as 𝐿

𝑔𝑙

℧
𝑋 :=

∀𝑘.𝐿𝑘
℧
𝑋 .

It can be shown that there is an isomorphism between the global

lift monad and the delay monad of Capretta [6]. Recall that, given

a type 𝑋 , the delay monad Delay(𝑋) is defined as the coinductive

type generated by now : 𝑋 → Delay(𝑋) and later : Delay(𝑋) →
Delay(𝑋).

It can be shown that for a clock-irrelevant type 𝑋 , 𝐿
𝑔𝑙

℧
𝑋 is a

final coalgebra of the functor 𝐹 (𝑌) = 𝑋 + 1 + 𝑌 (For example, this

follows from Theorem 4.3 in [4].)
7
Since Delay(𝑋 + 1) is also a

final coalgebra of this functor, then we have 𝐿
𝑔𝑙

℧
𝑋 � Delay(𝑋 + 1).

Given a predomain 𝑋 on a clock-irrelevant type, we can define

a “global” version of the lock-step error ordering and the weak

bisimilarity relation on elements of the global lift; the former is

defined by 𝑥 ≤𝑔𝑙
𝑋

𝑦 := ∀𝑘.𝑥 [𝑘] ≤ 𝑦 [𝑘], and the latter is defined

by 𝑥 ≈𝑔𝑙
𝑋

𝑦 := ∀𝑘.𝑥 [𝑘] ≈ 𝑦 [𝑘] . On the other hand, we can define

coinductively a “lock-step error ordering" relation on Delay(𝑋 + 1):

now(inr 1) ≤Del 𝑑
𝑥1 ≤𝑋 𝑥2

now(inl𝑥1) ≤Del now(inl𝑥2)

𝑑1 ≤Del 𝑑2
later𝑑1 ≤Del later𝑑2

And we similarly define by coinduction a “weak bisimilarity” re-

lation on Delay(𝑋 + 1), which uses a relation 𝑑 ⇓ 𝑥? between

Delay(𝑋 + 1) and 𝑋 + 1 that is defined as 𝑑 ⇓ 𝑥? := Σ𝑚∈N𝑑 =

later𝑚 (now𝑥?). Then weak bisimilarity is defined by the rules

𝑥? ≈𝑋+1 𝑦?
now𝑥? ≈Del now𝑦?

𝑑1 ⇓ 𝑥? 𝑥? ≈𝑋+1 𝑦?
later𝑑1 ≈Del now𝑦?

𝑑2 ⇓ 𝑦? 𝑥? ≈𝑋+1 𝑦?
now𝑥? ≈Del later𝑑2

𝑑1 ≈Del 𝑑2
later𝑑1 ≈Del later𝑑2

Note the similarity of these definitions to the corresponding guarded

definitions. By adapting the aforementioned theorem to the setting

of inductively-defined relations, we can show that both the global

lock-step error ordering and the global weak bisimilarity admit

coinductive definitions. In particular, modulo the above isomor-

phism between 𝐿
𝑔𝑙

℧
𝑋 and Delay(𝑋 + 1), the global version of the

lock-step error ordering is equivalent to the lock-step error order-

ing on Delay(𝑋 + 1), and likewise, the global version of the weak

bisimilarity relation is equivalent to the weak bisimilarity relation

on Delay(𝑋 + 1).
This implies that the global version of the extensional term pre-

cision semantics for 𝐿
𝑔𝑙

℧
𝑋 agrees with the corresponding notion for

Delay(𝑋 +1). Then adequacy follows by proving the corresponding

result for Delay(𝑋 + 1) which in turn follows from the definitions

of the relations.

6
A type 𝑋 is clock-irrelevant if there is an isomorphism ∀𝑘.𝑋 � 𝑋 .

7
The proof relies on the existence of an operation force : ∀𝑘. ▷𝑘 𝐴 → ∀𝑘.𝑋 that

allows us to eliminate the later operator under a clock quantifier. This must be added

as an axiom in guarded type theory.

7 DISCUSSION
7.1 Related Work
Eremondi [12] uses guarded type theory to define a syntactic model

for a gradually-typed source language with dependent types. By

working in guarded type theory, they are able to give an exact

semantics to non-terminating computations in a language which

is logically consistent, allowing for metatheoretic results about

the source language to be proven. Similarly to our approach, they

define a guarded lift monad to model potentially- nonterminating

computations and use guarded recursion to model the dynamic

type. However, they do not give a denotational semantics to term

precision and it is unclear how to prove the gradual guarantee in

this setting. The work includes a formalization of the syntactic

model in Guarded Cubical Agda.

Siek and Chen [29] give a proof in Agda of graduality for an

operational semantics. While they do not use the Guarded Cubical

extension, they do use a guarded logic of propositions shallowly

embedded in Agda. Our denotational approach requires full guarded

type theory not just guarded logic. An advantage of the denotational

approach is that it easily validates equational reasoning, not just

graduality, and it is completely independent of any particular syntax

of gradual typing.

7.2 Mechanization
In parallel with developing the theory discussed in this paper, we

are mechanizing our results and developing a reusable framework

for proving graduality in Guarded Cubical Agda [35]. As of this

writing, the work is in progress, but we have constructed most

parts of the concrete model discussed in Section 6. For instance,

we have defined types for predomains, error domains, and their

morphisms and relations, and we used the guarded features to

define the guarded lift + error monad and the dynamic type.

We plan to formalize the construction of perturbations and quasi-

representable relations, but we have yet to decide whether to follow

the approach we take in this work and define the abstract notion of

intensional model and formalize the constructions in that setting,

and then apply those abstract constructions to the concrete model.

Alternatively, it may be better from a mechanization standpoint

to carry out those abstract constructions explicitly in the concrete

model, i.e., our representation of objects in the concrete model of

predomains would include a field for the perturbations and our

notion of relations would include fields for the push-pull property

and quasi-representability. We leave this investigation to future

work.

Lastly, we plan to formalize the adequacy result discussed in

Section 6.3. This will involve adding axioms about clock quantifica-

tion as well as about the clock-irrelevance of booleans and natural

numbers, since as of this writing these axioms are not built-in to

Guarded Cubical Agda. As an experiment, we have formalized some

basic results involving clocks as part of our development.

7.3 Comparison to Explicit Step-Indexing
Working internally to guarded type theory reduces the overhead of

needing to carry around the step-indices in the proofs as is required

when using explicit step-indexing. Additionally, the logical relations

Denotational Semantics of Gradual Typing using Synthetic Guarded Domain Theory Woodstock ’18, June 03–05, 2018, Woodstock, NY

constructed to prove graduality in prior work [24, 25, 28] suffer

from technical complications of requiring two separate expression

relations, one that counts steps on the left and the other on the

right, and there is no analogue of this in our approach. However,

using two expression relations allows some but not all transitivite

reasoning of term precision to be recovered. In the future we aim

to explore if this approach is feasible in guarded semantics.

7.4 Synthetic Ordering
A key to managing the complexity of our concrete construction is

in using a synthetic approach to step-indexing rather than working

analytically with presheaves. This has helped immensely in our

ongoing mechanization in cubical Agda as it sidesteps the need to

formalize these constructions internally. However, there are other

aspects of the model, the bisimilarity and the monotonicity, which

are treated analytically and are similarly tedious. It may be pos-

sible to utilize further synthetic techniques to reduce this burden

as well, and have all type intrinsically carry a notion of bisimilar-

ity and ordering relation, and all constructions to automatically

preserve them. A synthetic approach to ordering is common in

(non-guarded) synthetic domain theory and has also been used for

synthetic reasoning for cost models [13, 15].

7.5 Future Work
In the future, we plan to apply our approach to give a denotational

semantics for languages that feature higher-order state or runtime-

extensible dynamic typing [32] as well as richer type disciplines

such as gradual dependent types and effect systems.

REFERENCES
[1] Amal J. Ahmed. 2006. Step-Indexed Syntactic Logical Relations for Recursive and

Quantified Types. In Programming Languages and Systems, 15th European Sympo-
sium on Programming, ESOP 2006, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28,
2006, Proceedings (Lecture Notes in Computer Science, Vol. 3924), Peter Sestoft (Ed.).
Springer, 69–83. https://doi.org/10.1007/11693024_6

[2] Andrew W. Appel and David McAllester. 2001. An indexed model of recursive

types for foundational proof-carrying code. ACM Trans. Program. Lang. Syst. 23,
5 (sep 2001), 657–683. https://doi.org/10.1145/504709.504712

[3] Robert Atkey and Conor McBride. 2013. Productive Coprogramming with

Guarded Recursion. In Proceedings of the 18th ACM SIGPLAN International Con-
ference on Functional Programming (Boston, Massachusetts, USA) (ICFP ’13).
Association for Computing Machinery, New York, NY, USA, 197–208. https:

//doi.org/10.1145/2500365.2500597

[4] Magnus Baunsgaard Kristensen, Rasmus Ejlers Mogelberg, and Andrea Vezzosi.

2022. Greatest HITs: Higher Inductive Types in Coinductive Definitions via

Induction under Clocks. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science (Haifa, Israel) (LICS ’22). Association for Computing

Machinery, New York, NY, USA, Article 42, 13 pages. https://doi.org/10.1145/

3531130.3533359

[5] Lars Birkedal, Rasmus Ejlers Mogelberg, Jan Schwinghammer, and Kristian

Stovring. 2011. First Steps in Synthetic Guarded Domain Theory: Step-Indexing

in the Topos of Trees. In 2011 IEEE 26th Annual Symposium on Logic in Computer
Science. 55–64. https://doi.org/10.1109/LICS.2011.16

[6] Venanzio Capretta. 2005. General Recursion via Coinductive Types. Logical
Methods in Computer Science Volume 1, Issue 2 (July 2005). https://doi.org/10.

2168/LMCS-1(2:1)2005

[7] Matteo Cimini and Jeremy G. Siek. 2016. The Gradualizer: A Methodology and

Algorithm for Generating Gradual Type Systems. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St.
Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New

York, NY, USA, 443–455. https://doi.org/10.1145/2837614.2837632

[8] Cyril Cohen, Thierry Coquand, SimonHuber, and AndersMörtberg. 2017. Cubical

type theory: A constructive interpretation of the univalence axiom. IFCoLog J.
Log. Appl. (2017).

[9] Pierre-Louis Curien, Marcelo P. Fiore, and Guillaume Munch-Maccagnoni. 2016.

A theory of effects and resources: adjunction models and polarised calculi. In

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 44–56. https:

//doi.org/10.1145/2837614.2837652

[10] Brian Patrick Dunphy. 2002. Parametricity As a Notion of Uniformity in Reflex-
ive Graphs. Ph. D. Dissertation. University of Illinois at Urbana-Champaign,

Champaign, IL, USA. Advisor(s) Reddy, Uday.

[11] Jeff Egger, Rasmus Ejlers Møgelberg, and Alex Simpson. 2014. The enriched

effect calculus: syntax and semantics. J. Log. Comput. 24, 3 (2014), 615–654.

https://doi.org/10.1093/LOGCOM/EXS025

[12] Joseph S. Eremondi. 2023. On the design of a gradual dependently typed language
for programming. Ph. D. Dissertation. University of British Columbia. https:

//doi.org/10.14288/1.0428823

[13] MARCELO P. FIORE. 1997. An enrichment theorem for an axiomatisation of

categories of domains and continuous functions. Mathematical Structures in
Computer Science 7, 5 (1997), 591–618. https://doi.org/10.1017/S0960129597002429

[14] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual

Typing. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16).
Association for Computing Machinery, New York, NY, USA, 429–442. https:

//doi.org/10.1145/2837614.2837670

[15] Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper. 2024. Decalf: A

Directed, Effectful Cost-Aware Logical Framework. Proc. ACM Program. Lang. 8,
POPL (2024), 273–301. https://doi.org/10.1145/3632852

[16] Claudio Hermida, Uday S. Reddy, and Edmund P. Robinson. 2014. Logical Re-

lations and Parametricity – A Reynolds Programme for Category Theory and

Programming Languages. Electronic Notes in Theoretical Computer Science 303
(2014), 149–180. https://doi.org/10.1016/j.entcs.2014.02.008 Proceedings of the

Workshop on Algebra, Coalgebra and Topology (WACT 2013).

[17] G. Janelidze and G.M. Kelly. 2001. A Note on Actions of a Monoidal Category.

Theory and Applications of Categories 9, 4 (2001), 61–91.
[18] Paul Blain Levy. 1999. Call-by-Push-Value: A Subsuming Paradigm. In Typed

Lambda Calculi and Applications, 4th International Conference, TLCA’99, L’Aquila,
Italy, April 7-9, 1999, Proceedings (Lecture Notes in Computer Science, Vol. 1581),
Jean-Yves Girard (Ed.). Springer, 228–242. https://doi.org/10.1007/3-540-48959-

2_17

[19] QingMing Ma and John C. Reynolds. 1991. Types, Abstractions, and Paramet-

ric Polymorphism, Part 2. In Proceedings of the 7th International Conference on
Mathematical Foundations of Programming Semantics. Springer-Verlag, Berlin,
Heidelberg, 1–40.

[20] Rasmus Ejlers Møgelberg and Marco Paviotti. 2016. Denotational Semantics of

Recursive Types in Synthetic Guarded Domain Theory. In Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science (New York, NY, USA)

(LICS ’16). Association for Computing Machinery, New York, NY, USA, 317–326.

https://doi.org/10.1145/2933575.2934516

[21] Rasmus Ejlers Møgelberg and Niccolò Veltri. 2019. Bisimulation as Path Type

for Guarded Recursive Types. Proc. ACM Program. Lang. 3, POPL, Article 4 (jan
2019), 29 pages. https://doi.org/10.1145/3290317

[22] H. Nakano. 2000. A modality for recursion. In Proceedings Fifteenth Annual
IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332). 255–266.
https://doi.org/10.1109/LICS.2000.855774

[23] Georg Neis, Derek Dreyer, and Andreas Rossberg. 2009. Non-Parametric Para-

metricity. In International Conference on Functional Programming (ICFP). 135–148.
https://doi.org/10.1145/1596550.1596572

[24] Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection

Pairs. Proc. ACM Program. Lang. 2, ICFP, Article 73 (jul 2018), 30 pages. https:

//doi.org/10.1145/3236768

[25] Max S. New, Eric Giovannini, and Daniel R. Licata. 2023. Gradual Typing for

Effect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2 (2023), 1758–1786.

https://doi.org/10.1145/3622860

[26] Max S. New, Dustin Jamner, andAmal Ahmed. 2019. Graduality and Parametricity:

Together Again for the First Time. Proc. ACM Program. Lang. 4, POPL, Article 46
(dec 2019), 32 pages. https://doi.org/10.1145/3371114

[27] Max S. New and Daniel R. Licata. 2018. Call-by-name Gradual Type Theory.

In Formal Structures for Computation and Deduction, Oxford England. https:

//doi.org/10.4230/LIPIcs.FSCD.2018.24

[28] Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual Type Theory.

Proc. ACM Program. Lang. 3, POPL, Article 15 (jan 2019), 31 pages. https://doi.

org/10.1145/3290328

[29] Jeremy G. Siek and Tianyu Chen. 2021. Parameterized cast calculi and reusable

meta-theory for gradually typed lambda calculi. J. Funct. Program. 31 (2021), e30.
https://doi.org/10.1017/S0956796821000241

[30] Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages.

In Scheme and Functional Programming Workshop (Scheme). 81–92.

https://doi.org/10.1007/11693024_6
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1145/3531130.3533359
https://doi.org/10.1145/3531130.3533359
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1145/2837614.2837632
https://doi.org/10.1145/2837614.2837652
https://doi.org/10.1145/2837614.2837652
https://doi.org/10.1093/LOGCOM/EXS025
https://doi.org/10.14288/1.0428823
https://doi.org/10.14288/1.0428823
https://doi.org/10.1017/S0960129597002429
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/3632852
https://doi.org/10.1016/j.entcs.2014.02.008
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1145/2933575.2934516
https://doi.org/10.1145/3290317
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1145/1596550.1596572
https://doi.org/10.1145/3236768
https://doi.org/10.1145/3236768
https://doi.org/10.1145/3622860
https://doi.org/10.1145/3371114
https://doi.org/10.4230/LIPIcs.FSCD.2018.24
https://doi.org/10.4230/LIPIcs.FSCD.2018.24
https://doi.org/10.1145/3290328
https://doi.org/10.1145/3290328
https://doi.org/10.1017/S0956796821000241

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini, Tingting Ding, and Max S. New

[31] JeremyG. Siek, MichaelM. Vitousek, Matteo Cimini, and John Tang Boyland. 2015.

Refined Criteria for Gradual Typing. In 1st Summit on Advances in Programming
Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 32), Thomas Ball, Rastislav Bodik, ShriramKrishnamurthi, Benjamin S. Lerner,

and Greg Morrisett (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 274–293. https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

[32] Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. 2022. Denotational se-

mantics of general store and polymorphism. CoRR abs/2210.02169 (2022).

https://doi.org/10.48550/ARXIV.2210.02169 arXiv:2210.02169

[33] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration:

From Scripts to Programs. In Dynamic Languages Symposium (DLS). 964–974.
[34] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Imple-

mentation of Typed Scheme. In ACM Symposium on Principles of Programming
Languages (POPL), San Francisco, California.

[35] Niccolò Veltri and Andrea Vezzosi. 2020. Formalizing 𝜋 -Calculus in Guarded

Cubical Agda. In Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs (New Orleans, LA, USA) (CPP 2020). Association
for Computing Machinery, New York, NY, USA, 270–283. https://doi.org/10.

1145/3372885.3373814

A GRADUAL TYPING SYNTAX
Theorem A.1. For every 𝐴, there is a derivation dyn(𝐴) : 𝐴 ⊑ 𝐷

Proof. By induction on 𝐴:

(1) 𝐴 =?, then 𝑟 (?) :? ⊑?
(2) 𝐴 = Nat, then InjN : Nat ⊑?
(3) 𝐴 = 𝐴1 ⇀ 𝐴2 then (dyn(𝐴1) ⇀ dyn(𝐴2))Inj→ : 𝐴1 ⇀

𝐴2 ⊑?
(4) 𝐴 = 𝐴1 ×𝐴2 then (dyn(𝐴1) × dyn(𝐴2))Inj× : 𝐴1 ×𝐴2 ⊑?

□

Theorem A.2. For any two derivations 𝑐, 𝑐′ : 𝐴 ⊑ 𝐴′ of the same
precision 𝑐 ≡ 𝑐′

Proof. (1) We show this by showing that derivations have a

canonical form.

The following presentation of precision derivations has unique

derivations

refl(𝐷) : 𝐷 ⊑ 𝐷 Inj
nat

: Nat ⊑ 𝐷

refl(Nat) : Nat ⊑ Nat

𝑐 : 𝐴𝑖 ⇀ 𝐴𝑜 ⊑ 𝐷 ⇀ 𝐷

𝑐 (Inj
arr
) : 𝐴𝑖 ⇀ 𝐴𝑜 ⊑ Nat

𝑐 : 𝐴𝑖 ⊑ 𝐴′𝑖 𝑑 : 𝐴𝑜 ⊑ 𝐴′𝑜
𝑐 ⇀ 𝑑 : 𝐴𝑖 ⇀ 𝐴𝑜 ⊑ 𝐴′𝑖 ⇀ 𝐴′𝑜

Since it satisfies reflexivity, cut-elimination and congruence,

it is a model of the original theory. Since it is a sub-theory

of the original theory, it is equivalent.

□

Type precision is a binary relation on typed terms. The original

gradual guarantee rules are as follows:

Γ⊑ ⊢ 𝑀 ⊑ 𝑀′ : 𝑐 𝑐 : 𝐴 ⊑ 𝐴′ 𝑐′ : 𝐴 ⊑ 𝐴′
2

Γ⊑ ⊢ 𝑀 ⊑ (𝑀 :: 𝐴′
2
) : 𝑐′

Γ⊑ ⊢ 𝑀 ⊑ 𝑀′ : 𝑐 𝑐 : 𝐴 ⊑ 𝐴′ 𝑐′ : 𝐴2 ⊑ 𝐴′

Γ⊑ ⊢ (𝑀 :: 𝐴2) ⊑ 𝑀′ : 𝑐′

Where the cast𝑀 :: 𝐴2 is defined to be

dn𝑑𝑦𝑛(𝐴2) up𝑑𝑦𝑛(𝐴)𝑀

These two rules are admissible in our presentation.

For the first rule, we first prove that dn𝑑𝑦𝑛(𝐴2) up𝑑𝑦𝑛(𝐴)𝑀 =

dn 𝑐′ up 𝑐 𝑀

dn𝑑𝑦𝑛(𝐴2) up𝑑𝑦𝑛(𝐴)𝑀 = dn (𝑐dyn(𝐴′)) up (𝑐′dyn(𝐴′))𝑀
(All derivations are equal)

= dn 𝑐 dn dyn(𝐴′) up dyn(𝐴′) up 𝑐′𝑀
(functoriality)

= dn 𝑐 up 𝑐′𝑀 (retraction)

Then the rest follows by the up/dn rules above and the fact that

precision derivations are all equal.

Thus the following properties are sufficient to provide an exten-

sional model of gradual typing without requiring transitivity of

term precision:

(1) Every precision is representable in the above sense,

(2) The association of casts to precision is functorial

(3) Type constructors are covariant functorial with respect to

relational identity and composition

B CALL-BY-PUSH-VALUE
B.1 Morphisms of CBPV Models
There are two relevant notions of morphism of CBPV models:

strict and lax. Given call-by-push-value modelsM1 = (V1, E1,→1

,𝑈1, 𝐹1) andM2 = (V2, E2,→2,𝑈2, 𝐹2), A strict morphism 𝐺 from

𝑀1 to 𝑀2 is given by a pair of functors 𝐺V : 𝑉1 → 𝑉2 and

𝐺E : 𝐸1 → 𝐸2 that strictly presere the constructors:

(1) 𝐺E ◦ 𝐹1 = 𝐹2 ◦𝐺V
(2) 𝐺V ◦𝑈1 = 𝑈2 ◦𝐺E
(3) 𝐺E (𝐴→1 𝐵) = 𝐺V (𝐴) →2 𝐺E (𝐵)
(4) 𝐺V (𝐴1 ×1 𝐴2) = 𝐺V (𝐴1) ×2 𝐺V (𝐴2)
(5) 𝐺V (11) = 12

As well as strictly preserving the corresponding universal mor-

phisms and coherence isomorphisms.

A lax morphism instead preserves these only up to transforma-

tion

(1) 𝐺E ◦ 𝐹1 ⇒ 𝐹2 ◦𝐺V
(2) 𝐺V ◦𝑈1 ⇒ 𝑈2 ◦𝐺E
(3) 𝐺E (𝐴→1 𝐵) ⇒ 𝐺V (𝐴) →2 𝐺E (𝐵)
(4) 𝐺V (𝐴1 ×1 𝐴2) ⇒ 𝐺V (𝐴1) ×2 𝐺V (𝐴2)
(5) 𝐺V (11) ⇒ 12

Additionally a lax morphism should have a relationship between

these transformations and the universal morphisms, but we will

only consider lax morphisms of thin categories, where such condi-

tions hold trivially.

B.2 Kleisli Actions of CBPV Type Constructors
In CBPV models, all the type constructors are interpreted as func-

tors:

(1) →: Vop × E → E
(2) × : V ×V → V
(3) 𝐹 : V → E
(4) 𝑈 : E → V

https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.48550/ARXIV.2210.02169
https://arxiv.org/abs/2210.02169
https://doi.org/10.1145/3372885.3373814
https://doi.org/10.1145/3372885.3373814

Denotational Semantics of Gradual Typing using Synthetic Guarded Domain Theory Woodstock ’18, June 03–05, 2018, Woodstock, NY

That is, they all have functorial actions on pure morphisms of value

types and linear morphisms of computation types. We use these

functorial actions extensively in the construction of casts and their

corresponding perturbations. But when defining downcasts of value

types and upcasts of computation types, we additionally need a

second functorial action of these categories: functoriality in impure
morphisms of value types and non-linear morphisms of compu-

tation types. These notions of morphism are given by the Kleisli
categories V𝑘 and E𝑘 which have value types and computation

types as objects but morphisms are defined as

V𝑘 (𝐴,𝐴′) = E(𝐹𝐴, 𝐹𝐴′)
E𝑘 (𝐵, 𝐵′) = V(𝑈𝐵,𝑈𝐵′)

with composition given by composition in E/V . That is we need

to define a second functorial action, that agrees with the above on

objects for these Kleisli categories:

(1)

k→: V𝑘op□E𝑘 → E𝑘
(2)

k

×: V𝑘□V𝑘 →V𝑘
(3)

k

𝐹 : V𝑘 → E𝑘
(4)

k

𝑈 : E𝑘 →V𝑘
Note that rather than the product of categories we use the “funny

tensor product” □. This is because the action on impure/non-linear

morphisms for

k→ /
k

× do not satisfy “joint functoriality” but instead
only “separate functoriality”, meaning we give rather than an action

on morphisms in both categories simultaneously instead an action

on each argument categories morphisms with the object in the

other category fixed. The existence of these functorial actions for

k→ and

k

× is reliant on the strength of the adjunction. We describe

them using the internal language of CBPV in order to more easily

verify their existence/functoriality:

(1) For

k→we define for𝜙 : E(𝐹𝐴, 𝐹𝐴′) and 𝐵 ∈ E themorphism

𝜙
k→ 𝐵 : V(𝑈 (𝐴′ → 𝐵),𝑈 (𝐴→ 𝐵)) as

𝑡 : 𝑈 (𝐴′ → 𝐵) ⊢ 𝜙 k→ 𝐵 = {𝜆𝑥 .𝑥 ′ ← 𝜙 [ret𝑥]; !𝑡𝑥 ′} : 𝑈 (𝐴→ 𝐵)

and for 𝐴 ∈ V and 𝑓 : V(𝑈𝐵,𝑈𝐵′) we define 𝐴
k→ 𝑓 :

V(𝑈 (𝐴→ 𝐵),𝑈 (𝐴→ 𝐵′)) as

𝑡 : 𝑈 (𝐴→ 𝐵) ⊢ 𝐴 k→ 𝑓 = {𝜆𝑥.!𝑓 [{!𝑡𝑥}]}

(2) For

k

× we define for 𝜙 : E(𝐹𝐴1, 𝐹𝐴2) and 𝐴′ ∈ V the mor-

phism 𝜙
k

× 𝐴2 as

• : 𝐹 (𝐴1×𝐴2) ⊢ 𝜙
k

× 𝐴2 = (𝑥1, 𝑥2) ← •;𝑥 ′1 ← 𝜙 [ret𝑥1]; ret(𝑥 ′1, 𝑥2) : 𝐹 (𝐴
′
1
×𝐴2)

and 𝐴1

k

× 𝜙 is defined symmetrically.

(3) For

k

𝑈 we need to define for 𝑓 : V(𝑈𝐵,𝑈𝐵′) a morphism

k

𝑈 𝑓 : E(𝐹𝑈𝐵, 𝐹𝑈𝐵′). This is simply given by the functorial

action of 𝐹 :
k

𝑈 𝑓 = 𝐹 (𝑓)

(4) Similarly

k

𝐹 𝜙 = 𝑈𝜙

Functoriality in each argument is easily established, meaning for

example for the function type is functorial in each argument:

(1) (𝜙 ◦ 𝜙 ′) k→ 𝐵 = (𝜙 ′ k→ 𝐵) ◦ (𝜙 k→ 𝐵)
(2) id

k→ 𝐵 = id

(3) 𝐴
k→ (𝑓 ◦ 𝑓 ′) = (𝐴 k→ 𝑓) ◦ (𝐴 k→ 𝑓)

(4) 𝐴
k→ id = id

Finally, note that all of these constructions lift to squares in a

double CBPV model since the squares themselves form a CBPV

model and the projection functions preserve CBPV structure. For

instance, given a square 𝛼 : 𝜙 ⊑𝐹𝑐𝑖
𝐹𝑐𝑜

𝜙 ′ and a horizontal morphism

𝑑 : 𝐵 ◦−• 𝐵′ of appropriate type, we get a square

𝛼
k→ 𝑑 : 𝜙

k→ 𝐵 ⊑𝑈 (𝑐𝑖→𝑑)
𝑈 (𝑐𝑜→𝑑) 𝜙

′ k→ 𝐵′

C DETAILS OF THE CONSTRUCTION OF AN
EXTENSIONAL MODEL

In Section 5.3, we outline the construction of an extensional model

of gradual typing starting from a step-1 intensional model. In this

section, we provide the details for each of the constructions men-

tioned there.

C.1 Constructing a Model with Perturbations
The goal of this section is to prove the following lemma:

Lemma C.1. LetM be a step-1 intensional model.
Then we can construct a step-2 intensional model.

We begin with a definition and some lemmas that will be useful

in the construction of the model.

Definition C.2. Let 𝑐 : 𝐴 ◦−• 𝐴′ be a value relation ofM. Let 𝑃𝐴
be a monoid of perturbations on 𝐴 and 𝑃𝐴′ a monoid of perturba-

tions on 𝐴′. A push-pull structure ΠV𝑐 for 𝑐 with respect to 𝑃𝐴 and

𝑃𝐴′ consists of:

• A function push : 𝑃𝐴 → 𝑃𝐴′ such that for all 𝛿𝑙 ∈ 𝑃𝐴 we

have 𝛿𝑙 ⊑𝑐𝑐 push(𝛿𝑙).
• A function pull : 𝑃𝐴′ → 𝑃𝐴 such that for all 𝛿𝑟 ∈ 𝑃𝐴′ we

have pull(𝛿𝑟) ⊑𝑐𝑐 𝛿𝑟 .
We define a push-pull structure ΠE

𝑑
for 𝑑 : 𝐵 ◦−• 𝐵′ with respect

to perturbation monoids 𝑃𝐵 and 𝑃𝐵′ in an analogous manner.

Lemma C.3. Let 𝑐 : 𝐴 ◦−• 𝐴′ and 𝑐′ : 𝐴′ ◦−• 𝐴′′ be value
relations, and let 𝑃𝐴, 𝑃𝐴′ and 𝑃𝐴′′ be monoids of perturbations. Given
a push-pull structure ΠV𝑐 for 𝑐 with respect to 𝑃𝐴 and 𝑃𝐴′ , and and a
push-pull structure ΠV

𝑐′ for 𝑐
′ with respect to 𝑃𝐴′ and 𝑃𝐴′′ , we can

define a push-pull structure ΠV
𝑐•𝑐′ for 𝑐 • 𝑐

′.
Likewise, we can define a push-pull structure for the composition

of computation relations.

Proof. We define ΠV
𝑐•𝑐′ as the following push-pull structure:

• push𝑐•𝑐′ = push𝑐′ ◦ push𝑐
• pull𝑐•𝑐′ = pull𝑐 ◦ pull𝑐′

We observe that the required squares exist for both push and

pull. In particular, for push we have that 𝛿𝑙 ⊑𝑐𝑐 push𝑐 (𝛿𝑙) using
the push property for 𝑐 , and then using the push property for 𝑐′

we have push𝑐 (𝛿𝑙) ⊑𝑐
′

𝑐′ push𝑐′ (push𝑐 (𝛿
𝑙)). We can then compose

these squares horizontally to obtain the desired square. The pull

property follows similarly.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini, Tingting Ding, and Max S. New

The push-pull structure for the composition of computation

relations is defined analogously. □

Lemma C.4. Let 𝑐 : 𝐴 ◦−• 𝐴′ and let 𝑃𝐴 and 𝑃𝐴′ be monoids of
perturbations. Given a push-pull structure ΠV𝑐 for 𝑐 with respect to
𝑃𝐴 and 𝑃𝐴′ , we can define a push-pull structure ΠE

𝐹𝑐
for 𝐹 (𝑐) with

respect to N × 𝑃𝐴 and N × 𝑃𝐴′ .
Likewise, from a push-pull structure for 𝑑 with respect to 𝑃𝐵 and

𝑃𝐵′ , we can define a push-pull structure for𝑈𝑑 with respect to N×𝑃𝐵
and N × 𝑃𝐵′ .

Proof. We define push𝐹𝑐 : N × 𝑃𝐴 → N × 𝑃𝐴′ by

push𝐹𝑐 (𝑛, 𝑎) = (𝑛, push𝑐 (𝑎)) .
Then we need to build the following square:

𝐹𝐴 𝐹𝐴′

𝐹𝐴 𝐹𝐴′𝐹𝑐p

𝐹𝑐p
(𝛿∗

𝐹𝐴
)𝑛◦ptb𝐴 (𝑎) (𝛿∗

𝐹𝐴′)
𝑛◦ptb𝐴′ (push𝑐 (𝑎))

This is obtained by pasting 𝑛 copies of the square 𝛿∗
𝐹𝐴
⊑𝐹𝑐
𝐹𝑐

𝛿∗
𝐹𝐴′

on top of the square corresponding to the push property for 𝑐 .

The proof for𝑈𝑑 is analogous. □

Lemma C.5. Let 𝑐1 : 𝐴1 ◦−• 𝐴′
1
and 𝑐2 : 𝐴2 ◦−• 𝐴′

2
, and let

𝑃𝐴1
, 𝑃𝐴2

, 𝑃𝐴′
1

and 𝑃𝐴′
2

be monoids of perturbations. Given push-pull

structures ΠV𝑐1 with respect to 𝑃𝐴1
and 𝑃𝐴′

1

, and ΠV𝑐2 with respect to

𝑃𝐴2
and 𝑃𝐴′

2

, we can define a push-pull structure ΠV𝑐1×𝑐2 with respect
to 𝑃𝐴1

× 𝑃𝐴2
and 𝑃𝐴′

1

× 𝑃𝐴′
2

.

Proof. Wedefine the push function forΠV𝑐1×𝑐2 by push(𝑎1, 𝑎2) =
(push𝑐1 (𝑎1), push𝑐2 (𝑎2)) and likewise for pull. The push property

holds because it holds for each component. The pull property is

established similarly. □

Lemma C.6. Let 𝑐 : 𝐴 ◦−• 𝐴′ and 𝑑 : 𝐵 ◦−• 𝐵′. Given push-pull
structures ΠV𝑐 for 𝑐 and ΠE

𝑑
for 𝑑 , we can define a push-pull structure

ΠE
𝑐→𝑑

for 𝑐 → 𝑑 .

Proof. Follows from the functorial action of→ on perturbations

and squares. □

We now proceed with the construction of the model:

Define a step-2 modelM′ as follows:
• Value objects are pairs consisting of:

– A value object 𝐴 inV𝑓 .

– A monoid 𝑃𝐴 of perturbations and a monoid homomor-

phism ptb𝐴 : 𝑃𝐴 → {𝑓 ∈ V𝑓 (𝐴,𝐴) | 𝑓 ≈ id𝐴}.
• Computation objects are pairs consisting of:

– A computation object 𝐵 in E𝑓 .
– A monoid 𝑃𝐵 of perturbations and a monoid homomor-

phism ptb𝐵 : 𝑃𝐵 → {𝜙 ∈ E𝑓 (𝐵, 𝐵) | 𝜙 ≈ id𝐵}.
• Morphisms are given bymorphisms of the underlying objects

inV𝑓 and E𝑓 , respectively.
• Given objects (𝐴, 𝑃𝐴, ptb𝐴) and (𝐴′, 𝑃𝐴′ , ptb𝐴′) a value rela-
tion is a pair consisting of

– A value relation 𝑐 ∈ V𝑠𝑞 .

– A push-pull structure ΠV𝑐 for 𝑐 with respect to 𝑃𝐴 and

𝑃𝐴′ .

• Similarly, a computation relation between (𝐵, 𝑃𝐵, ptb𝐵) and
(𝐵′, 𝑃𝐵′ , ptb𝐵′) consists of
– A computation relation 𝑑 ∈ E𝑠𝑞 .
– A push-pull structure ΠE

𝑑
for 𝑑 with respect to 𝑃𝐵 and 𝑃𝐵′ .

• The squares are the same as the squares of the original model

M
• We define composition of relations (𝑐,ΠV𝑐) and (𝑐′,ΠV𝑐′) as
(𝑐 • 𝑐′,ΠV

𝑐•𝑐′) where Π
V
𝑐•𝑐′ is as in Lemma C.3, and likewise

for computation relations.

Now we define the actions of the functors:

• We define × on objects by

(𝐴1, 𝑃𝐴1
, ptb𝐴1

) × (𝐴2, 𝑃𝐴2
, ptb𝐴2

) = (𝐴1×𝐴2, 𝑃𝐴1
×𝑃𝐴2

, ptb𝐴1×𝐴2

)
where ptb𝐴1×𝐴2

(𝑝1, 𝑝2) = ptb𝐴1

(𝑝1) × ptb𝐴2

(𝑝2).
Using Lemma C.5, we define × on relations by

(𝑐1,ΠV𝑐1), (𝑐2Π
V
𝑐2
) = (𝑐1 × 𝑐2,ΠV𝑐1×𝑐2).

• We define 𝐹 on objects by

𝐹 (𝐴, 𝑃𝐴, ptb𝐴) = (𝐹𝐴,N × 𝑃𝐴, ptb𝐹𝐴),
where we define ptb𝐹𝐴 (𝑛, 𝑎) = (𝛿∗𝐹𝐴)

𝑛 ◦ 𝐹 (ptb𝐴 (𝑎)).
Using Lemma C.4, we define 𝐹 on relations by

𝐹 (𝑐,ΠV𝑐) = (𝐹𝑐,ΠE𝐹𝑐) .
• We define𝑈 on objects by

𝑈 (𝐵, 𝑃𝐵, ptb𝐵) = (𝑈𝐵,N × 𝑃𝐵, ptb𝑈𝐵),
where we define ptb𝑈𝐵 (𝑛,𝑏) = (𝛿∗𝑈𝐵

)𝑛 ◦𝑈 (ptb𝐵 (𝑏)).
Using Lemma C.4, we define𝑈 on relations by

𝑈 (𝑑,ΠE
𝑑
) = (𝑈𝑑,ΠV

𝑈𝑑
) .

We define→ on objects by

(𝐴, 𝑃𝐴, ptb𝐴) → (𝐵, 𝑃𝐵, ptb𝐵) = (𝐴→ 𝐵, 𝑃
𝑜𝑝

𝐴
× 𝑃𝐵, ptb𝐴→𝐵),

where we define ptb𝐴→𝐵 (𝑎, 𝑏) = ptb𝐴 (𝑎) → ptb𝐵 (𝑏).
Using Lemma C.6, we define→ on relations by

(𝑐,ΠV𝑐) → (𝑑,ΠE𝑑) = (𝑐 → 𝑑,ΠE
𝑐→𝑑
) .

We define a Kleisli arrow operation on perturbations that takes

a perturbation in 𝑃𝑈𝐵 to a perturbation in 𝑃𝑈 (𝐴→𝐵) , as follows:

Given a perturbation 𝑢 = (𝑛,𝑏) ∈ 𝑃𝑈𝐵 we define id
k→ 𝑢 to be

(𝑛, id𝑃𝐴 , 𝑏) ∈ 𝑃𝑈 (𝐴→𝐵) . We need to show that

ptb𝑈 (𝐴→𝐵) (id
k→ (𝑛,𝑏)) = id

k→ ptb𝑈𝐵 (𝑛,𝑏).
That is, we need to show that

(𝛿∗
𝑈 (𝐴→𝐵))

𝑛 ◦𝑈 (id𝐴 → ptb𝐵 (𝑏)) = id
k→ (𝛿∗𝑈𝐵)

𝑛 ◦𝑈 (ptb𝐵 (𝑏))

This can be checked by unfolding the definition of

k→; the proof

uses the fact that 𝛿∗
𝑈𝐵

commutes with computation morphisms.

Denotational Semantics of Gradual Typing using Synthetic Guarded Domain Theory Woodstock ’18, June 03–05, 2018, Woodstock, NY

Given a perturbation 𝑞 = (𝑛, 𝑎) ∈ 𝑃𝐹𝐴 we define (𝑛, 𝑎) k→ id =

(𝑛, 𝑎, id𝑃𝐵) ∈ 𝑃𝑈 (𝐴→𝐵) . We need to show that

ptb𝑈 (𝐴→𝐵) ((𝑛, 𝑎)
k→ id) = ptb𝐹𝐴 (𝑛, 𝑎)

k→ id.

By similar reasoning to the above, this holds because 𝛿∗
𝐹𝐴

commutes

with computation morphisms.

We can similarly construct a Kleisli product operation on per-

turbations. Given a perturbation (𝑛, 𝑎1, 𝑎2) ∈ 𝑃𝐹 (𝐴1×𝐴2) we de-

fine (𝑛, 𝑎1, 𝑎2)
k

× id = (𝑛, 𝑎1, id𝑃𝐴
2

), and likewise we define id
k

×
(𝑛, 𝑎1, 𝑎2) = (𝑛, id𝑃𝐴

1

, 𝑎2).

C.2 Constructing a Model with
Quasi-Representable Relations

The goal of this section is to prove the following lemma:

Lemma C.7. LetM be a step-2 intensional model.
Then we can construct a step-3 intensional model.

Before proceeding with the proof, we begin with a definition.

Definition C.8 (representation structure). Let 𝑐 : 𝐴 ◦−• 𝐴′ be
a value relation. A left-representation structure 𝜌𝐿𝑐 for 𝑐 consists

of a value morphism 𝑒𝑐 ∈ V𝑓 (𝐴,𝐴′) such that 𝑐 is quasi-left-

representable by 𝑒𝑐 (see Definition 5.4). We similarly define a right-

representation structure 𝜌𝑅𝑐 for 𝑐 to consist of a morphism 𝑝𝑐 ∈
V𝑓 (𝐴′, 𝐴) such that 𝑐 is quasi-right-representable by 𝑝𝑐 (see Defi-

nition 5.5).

Likewise, let 𝑑 : 𝐵 ◦−• 𝐵′ be a computation relation. Left- and

right-representation structures for 𝑑 are defined in a similar man-

ner, except the representing morphisms are now computation mor-

phisms rather than value morphisms.

Recall the notion of quasi-order-equivalence as defined in Defi-

nition 5.6. The following lemma will be useful in showing that two

relations are quasi-order-equivalent.

Lemma C.9. Let 𝑐, 𝑐′ : 𝐴 ◦−• 𝐴′. If 𝑐 and 𝑐′ are both quasi-left-
representable by the same 𝑓 , then 𝑐 ≈ 𝑐′.

Dually, if 𝑑 and 𝑑′ are both quasi-right-representable by the same
𝜙 , then 𝑑 ≈ 𝑑′.

Proof. By UpR for 𝑐′, there exists a perturbation 𝛿
𝑙,𝑒
𝑐′ and a

square UpR𝑐′ : 𝛿
𝑙,𝑒
𝑐′ ⊑

𝑟 (𝐴)
𝑐′ 𝑓 .

By UpL for 𝑐 , there exists a perturbation 𝛿
𝑟,𝑒
𝑐 and a square UpL𝑐 :

𝑓 ⊑𝑐
𝑟 (𝐴′) 𝛿

𝑟,𝑒
𝑐 .

Composing these horizontally we get the following square:

𝐴 𝐴 𝐴′

𝐴 𝐴′ 𝐴′

𝑟 (𝐴) 𝑐

𝑐′ 𝑟 (𝐴′)

𝛿
𝑙,𝑒

𝑐′ 𝑓 𝛿
𝑟,𝑒
𝑐

And since 𝑟 (𝐴) • 𝑐 = 𝑐 and 𝑐′ • 𝑟 (𝐴′) = 𝑐′, we are finished.
The other square (i.e., with 𝑐′ on top) is constructed in an analo-

gous manner. □

Lemma C.10. In the below, let 𝑐 : 𝐴 ◦−• 𝐴′ and 𝑐′ : 𝐴′ ◦−• 𝐴′′
and 𝑑 : 𝐵 ◦−• 𝐵′ and 𝑑′ : 𝐵′ ◦−• 𝐵′′.

(1) Given left-representation structures 𝜌𝐿𝑐 for 𝑐 and 𝜌𝐿
𝑐′ for 𝑐

′, we
can define a left-representation structure for the composition
𝑐 • 𝑐′

(2) Given right-representation structures 𝜌𝑅
𝑑
for 𝑑 and 𝜌𝑅

𝑑 ′
for 𝑑′,

we can define a right-representation structure for the composi-
tion 𝑑 • 𝑑′

(3) Given right-representation structures 𝜌𝑅
𝐹𝑐

for 𝐹𝑐 and 𝜌𝑅
𝐹𝑐′ for

𝐹𝑐′, we can define a right-representation structure 𝜌𝑅
𝐹 (𝑐•𝑐′) for

𝐹 (𝑐 • 𝑐′).
(4) Given left-representation structures 𝜌𝐿

𝑈𝑑
for𝑈𝑑 and 𝜌𝐿

𝑈𝑑 ′
for

𝑈𝑑′, we can define a left-representation structure 𝜌𝐿
𝑈 (𝑑•𝑑 ′) for

𝑈 (𝑑 • 𝑑′).

Proof. (1) We define 𝜌𝐿
𝑐•𝑐′ as follows. In the definitions of

the perturbations, we make use of the fact that 𝑐 and 𝑐′

satisfy the push-pull property.

• 𝑒𝑐•𝑐′ = 𝑒𝑐′ ◦ 𝑒𝑐
• 𝛿

𝑟,𝑒
𝑐•𝑐′ = 𝛿

𝑟,𝑒
𝑐′ ◦ push𝑐′ (𝛿

𝑟,𝑒
𝑐)

• 𝛿
𝑙,𝑒
𝑐•𝑐′ = pull𝑐 (𝛿

𝑙,𝑒
𝑐′) ◦ 𝛿

𝑙,𝑒
𝑐

• UpL is the following square:

𝐴 𝐴′ 𝐴′′

𝐴′ 𝐴′ 𝐴′′

𝐴′ 𝐴′′

𝐴′′ 𝐴′′

𝑒𝑐

id

𝑒𝑐′

id

𝑟 (𝐴′)p 𝑐′p

push𝑐′ (𝛿
𝑟,𝑒
𝑐)

𝑐p 𝑐′p
𝛿
𝑟,𝑒
𝑐

𝛿
𝑟,𝑒

𝑐′

𝑐′p

𝑟 (𝐴′′)p

UpL𝑐

(∗∗)

(∗)

UpL𝑐′

The square (∗) exists by the push-pull property for 𝑐′, and
the square (∗∗) exists because 𝑟 is a unit for horizontal
composition, so 𝑟 (𝐴′) • 𝑐′ = 𝑐′, and so this is simply the

identity square id𝑐′ ∈ V𝑠𝑞 (𝑐′, 𝑐′).
• UpR is the following square:

𝐴 𝐴

𝐴 𝐴′

𝐴 𝐴′ 𝐴′

𝐴 𝐴′ 𝐴′′

𝛿
𝑙,𝑒
𝑐

id

pull𝑐 (𝛿
𝑙,𝑒

𝑐′)

id

𝑒𝑐

𝑒𝑐′

𝑟 (𝐴)p

𝑐p

𝑐p 𝑟 (𝐴′)p

𝑐p 𝑐′
p

𝛿
𝑙,𝑒

𝑐′

(∗)

UpR𝑐

(∗∗) UpR𝑐′

(2) We define 𝜌𝑅
𝑑•𝑑 ′ as follows:

• 𝑝𝑑•𝑑 ′ = 𝑝𝑑 ◦ 𝑝𝑑 ′
• 𝛿

𝑙,𝑝

𝑑•𝑑 ′ = 𝛿
𝑙,𝑝

𝑑
◦ pull𝑑 (𝛿

𝑙,𝑝

𝑑 ′
)

• 𝛿
𝑟,𝑝

𝑑•𝑑 ′ = push𝑑 ′ (𝛿
𝑟,𝑝

𝑑
) ◦ 𝛿𝑟,𝑝

𝑑 ′

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini, Tingting Ding, and Max S. New

• DnR is the following square:

𝐵 𝐵′ 𝐵′′

𝐵 𝐵′ 𝐵′

𝐵 𝐵′

𝐵 𝐵

𝑑p 𝑑 ′p

𝑑p

𝑟 (𝐵)p

𝑝𝑑′

id

𝑝𝑑

pull𝑑 (𝛿
𝑙,𝑝

𝑑′)

id

𝛿
𝑙,𝑝

𝑑

𝑑p 𝑟 (𝐵′)p

𝛿
𝑙,𝑝

𝑑′

DnR𝑑

(∗) DnR𝑑′

Here the square (∗) exists by the push-pull property for 𝑑 .

• DnL is the following square:

𝐵′′ 𝐵′′

𝐵′ 𝐵′′

𝐵′ 𝐵′ 𝐵′′

𝐵 𝐵′ 𝐵′′

𝑝𝑑′

id

𝑝𝑑

𝛿
𝑟,𝑝

𝑑′

id

push𝑑′ (𝛿
𝑟,𝑝

𝑑
)

𝑟 (𝐵′′)p

𝑑 ′p

𝑟 (𝐵′)p 𝑑 ′p

𝑑
p

𝑑 ′
p

𝛿
𝑟,𝑝

𝑑

DnL𝑑′

(∗)DnL𝑑

(3) We define 𝜌𝑅
𝐹 (𝑐•𝑐′) as follows.

First, we claim that 𝐹 (𝑐 • 𝑐′) and 𝐹𝑐 • 𝐹𝑐′ are both quasi-

left-represented by 𝐹𝑒𝑐′ ◦ 𝐹𝑒𝑐 . Indeed, we have by part (1)

that 𝑒′𝑐 ◦ 𝑒𝑐 left-represents 𝑐 • 𝑐′, and then since 𝐹 preserves

perturbations and squares it follows that 𝐹 (𝑒′𝑐 ◦ 𝑒𝑐) = 𝐹𝑒𝑐′ ◦
𝐹𝑒𝑐 quasi-left-represents 𝐹 (𝑐 • 𝑐′). On the other hand, we

also know that 𝐹𝑒𝑐 quasi-left-represents 𝐹𝑐 and 𝐹𝑒𝑐′ left-

represents 𝐹𝑐′, so their composition quasi-left-represents

𝐹𝑐 • 𝐹𝑐′. Thus, by Lemma C.9, there is a square 𝛼 of the form

𝐹𝐴 𝐹𝐴′′

𝐹𝐴 𝐹𝐴′ 𝐹𝐴′′

𝐹 (𝑐•𝑐′)p

𝐹𝑐p 𝐹𝑐′p
𝛿𝑙 𝛿𝑟𝛼

for some perturbations 𝛿𝑙 and 𝛿𝑟 . We define the projection

𝑝𝐹 (𝑐•𝑐′) to be 𝑝𝐹𝑐•𝐹𝑐′◦𝛿𝑟 .We define𝛿
𝑙,𝑝

𝐹 (𝑐•𝑐′) to be𝛿
𝑙,𝑝

𝐹𝑐•𝐹𝑐′◦𝛿
𝑙

Then we can build the square for DnR by pasting the square

𝛼 on top of the DnR square for the composition 𝐹𝑐 • 𝐹𝑐′, as
shown below:

𝐹𝐴 𝐹𝐴′′

𝐹𝐴 𝐹𝐴′ 𝐹𝐴′′

𝐹𝐴 𝐹𝐴

𝐹 (𝑐•𝑐′)p

𝐹𝑐p 𝐹𝑐′p

𝑟 (𝐹𝐴)p

𝛿𝑙

𝛿
𝑙,𝑝

𝐹𝑐•𝐹𝑐′

𝛿𝑟

𝑝𝐹𝑐•𝐹𝑐′

𝛼

DnR𝐹𝑐•𝐹𝑐′

We define 𝛿
𝑟,𝑝

𝐹 (𝑐•𝑐′) to be 𝛿
𝑟,𝑝

𝐹𝑐•𝐹𝑐′ ◦ 𝛿
𝑟
. For DnL, we paste the

identity square 𝛿𝑟 ⊑ 𝛿𝑟 on top of the DnL square for the

composition 𝐹𝑐 • 𝐹𝑐′, and below that we paste the square

id ⊑𝐹𝑐•𝐹𝑐′
𝐹 (𝑐•𝑐′) id which we get from the fact that 𝐹 is lax.

𝐹𝐴′′ 𝐹𝐴′′

𝐹𝐴′′ 𝐹𝐴′′

𝐹𝐴 𝐹𝐴′ 𝐹𝐴′′

𝐹𝐴 𝐹𝐴′′

𝑟 (𝐹𝐴′′)p

𝑟 (𝐹𝐴′′)p

𝐹 (𝑐•𝑐′)p

𝛿𝑟

𝑝𝐹𝑐•𝐹𝑐′

id

𝛿𝑟

𝛿
𝑟,𝑝

𝐹𝑐•𝐹𝑐′

id

𝐹𝑐p 𝐹𝑐′p

𝑟 (𝛿𝑟)

DnL𝐹𝑐•𝐹𝑐′

(4) We define 𝜌𝐿 (𝑈 (𝑑 • 𝑑′)) in an analogous manner to the

above.

□

Lemma C.11. Let 𝑐 : 𝐴 ◦−• 𝐴′, and let 𝜌𝐿𝑐 be a left-representation
structure for 𝑐 . Then we can define a left-representation structure
𝜌𝐿
𝑈 𝐹 (𝑐) for𝑈𝐹 (𝑐).
Similarly, let 𝑑 : 𝐵 ◦−• 𝐵′ and let 𝜌𝑅

𝑑
be a right-representation

structure for 𝑑 . Then we can define a right-representation structure
𝜌𝑅
𝐹𝑈 (𝑑) for 𝐹𝑈 (𝑑).

Proof. We define 𝜌𝐿
𝑈 𝐹 (𝑐) as follows:

• 𝑒𝑈𝐹 (𝑐) = 𝑈𝐹 (𝑒𝑐)
• 𝛿

𝑟,𝑒

𝑈 𝐹 (𝑐) = 𝑈𝐹 (𝛿𝑟,𝑒𝑐) (which is in the monoid of perturbations

of𝑈𝐹 (𝐴′) because the perturbation monoids are closed un-

der the actions of the functors 𝐹 and𝑈)

• 𝛿
𝑙,𝑒

𝑈 𝐹 (𝑐) = 𝑈𝐹 (𝛿𝑙,𝑒𝑐)
• We get the two commuting squares by the functorial action

of𝑈𝐹 on the two squares for 𝑐 , i.e., UpR𝑈𝐹 (𝑐) = 𝑈𝐹 (UpR𝑐)
We define 𝜌𝑅

𝐹𝑈 (𝑑) in a similar manner. □

Lemma C.12. Let 𝑐1 : 𝐴1 ◦−• 𝐴′
1
and 𝑐2 : 𝐴2 ◦−• 𝐴′

2
. Let 𝜌𝐿𝑐1 be a

left-representation structure for 𝑐1, and let 𝜌𝐿𝑐2 be a left-representation
structure for 𝑐2. Then we can define a left-representation structure for
𝑐1 × 𝑐2.

Likewise, let 𝜌𝑅
𝐹𝑐1

and 𝜌𝑅
𝐹𝑐2

be right-representation structures for
𝐹𝑐1 and 𝐹𝑐2 respectively. Then we can define a right-representation
structure for 𝐹 (𝑐1 × 𝑐2).

Proof. We define 𝜌𝐿𝑐1×𝑐2 as follows:

• 𝑒𝑐1×𝑐2 = 𝑒𝑐1 × 𝑒𝑐2
• 𝛿

𝑟,𝑒
𝑐1×𝑐2 = 𝛿

𝑟,𝑒
𝑐1 × 𝛿

𝑟,𝑒
𝑐2 and likewise for 𝛿

𝑙,𝑒
𝑐1×𝑐2

• We get the commuting squares via the functorial action of ×
on the corresponding squares for 𝑐1 and 𝑐2.

We define 𝜌𝑅
𝐹 (𝑐1×𝑐2) as follows:

• 𝑝𝐹 (𝑐1×𝑐2) = (𝑝𝐹𝑐1
k

× 𝐴2) ◦ (𝐴′
1

k

× 𝑝𝐹𝑐2)

• 𝛿
𝑙,𝑝

𝐹 (𝑐1×𝑐2) = (𝛿
𝑙,𝑝

𝐹𝑐1

k

× 𝐴2) ◦ (𝐴1

k

× 𝛿𝑙,𝑝
𝐹𝑐2
)

• 𝛿
𝑟,𝑝

𝐹 (𝑐1×𝑐2) = (𝛿
𝑟,𝑝

𝐹𝑐1

k

× 𝐴′
2
) ◦ (𝐴′

1

k

× 𝛿𝑟,𝑝
𝐹𝑐2
)

• The commuting squares are obtained via the functorial action

of

k

× on the squares for 𝐹𝑐1 and 𝐹𝑐2.

□

Denotational Semantics of Gradual Typing using Synthetic Guarded Domain Theory Woodstock ’18, June 03–05, 2018, Woodstock, NY

Lemma C.13. Let 𝑐 : 𝐴 ◦−• 𝐴′ and 𝑑 : 𝐵 ◦−• 𝐵′. Let 𝜌𝐿𝑐 be a
left-representation structure for 𝑐 , and let 𝜌𝑅

𝑑
be a right-representation

structure for 𝑑 . Then we can define a right-representation structure
for 𝑐 → 𝑑 .

Likewise, let 𝜌𝑅
𝐹𝑐

be a right-representation structure for 𝐹𝑐 , and let
𝜌𝐿
𝑈𝑑

be a left-representation structure for𝑈𝑑 . Then we can define a
left-representation structure for𝑈 (𝑐 → 𝑑).

Proof. We define 𝜌𝑅
𝑐→𝑑

as follows:

• 𝑝𝑐→𝑑 = 𝑒𝑐 → 𝑝𝑑 ∈ E𝑓 (𝐴′ → 𝐵′, 𝐴 → 𝐵) (using the

functorial action of→ on morphisms).

• 𝛿
𝑙,𝑝

𝑐→𝑑
= 𝛿

𝑙,𝑒
𝑐 → 𝛿

𝑙,𝑝

𝑑

• 𝛿
𝑟,𝑝

𝑐→𝑑
= 𝛿

𝑟,𝑒
𝑐 → 𝛿

𝑟,𝑝

𝑑
• The squares DnR and DnL are obtained via the functorial

action of→, i.e., we define

DnR𝑐→𝑑 = UpR𝑐 → DnR𝑑 : (𝛿𝑙,𝑒𝑐 → 𝛿
𝑙,𝑝

𝑑
) ⊑𝑐→𝑑

𝑟 (𝐴→𝐵) (𝑒𝑐 → 𝑝𝑑),

and

DnL𝑐→𝑑 = UpL𝑐 → DnL𝑑 .

We define 𝜌𝐿
𝑈 (𝑐→𝑑) as follows:

• 𝑒𝑈 (𝑐→𝑑) = (𝑝𝐹𝑐
k→ 𝐵′) ◦ (𝐴 k→ 𝑒𝑈𝑑)

• 𝛿
𝑟,𝑒

𝑈 (𝑐→𝑑) = (𝛿
𝑟,𝑝

𝐹𝑐

k→ 𝐵′) ◦ (𝐴′ k→ 𝛿
𝑟,𝑒

𝑈𝑑
)

• 𝛿
𝑙,𝑒

𝑈 (𝑐→𝑑) = (𝛿
𝑙,𝑝

𝐹𝑐

k→ 𝐵) ◦ (𝐴 k→ 𝛿
𝑙,𝑒

𝑈𝑑
)

• The squares UpL and UpR are obtained via the functorial

action of

k→. For instance, UpL is given by the following

square:

𝑈 (𝐴→ 𝐵) 𝑈 (𝐴′ → 𝐵′)

𝑈 (𝐴→ 𝐵′) 𝑈 (𝐴′ → 𝐵′)

𝑈 (𝐴′ → 𝐵′) 𝑈 (𝐴′ → 𝐵′)

𝑈 (𝑐→𝑑)

𝑈 (𝑐→𝑟 (𝐵′))

𝑈 (𝑟 (𝐴′)→𝑟 (𝐵′))
𝑝𝐹𝑐

k→𝐵′

𝐴′
k→𝛿

𝑟,𝑒

𝑈𝑑

𝛿
𝑟,𝑝

𝐹𝑐

k→𝐵′

𝐴
k→𝑒𝑈𝑑 id𝐹𝑐

k→UpL𝑈𝑑

DnL𝐹𝑐
k→id𝑟 (𝐵′)

The construction of UpR is similar. □

Now we can give the proof of the main lemma:

We define a step-3 modelM′ as follows:
• The objects ofM′ are defined to be the same as the objects

ofM.

• The value and computation morphisms inM′ are the same

as those ofM.

• A value relation is defined to be a tuple (𝑐, 𝜌𝐿𝑐 , 𝜌𝑅𝐹𝑐) with
– 𝑐 a value relation inM,

– 𝜌𝐿𝑐 a left-representation structure for 𝑐 , and

– 𝜌𝑅
𝐹𝑐

a right-representation structure for 𝐹𝑐

• Likewise, a computation relation is defined to be a tuple

(𝑑, 𝜌𝑅
𝑑
, 𝜌𝐿

𝑈𝑑
) with

– 𝑑 a computation relation inM,

– 𝜌𝑅
𝑑
a right-representation structure for 𝑑 , and

– 𝜌𝐿
𝑈𝑑

a left-representation structure for𝑈𝑑 .

• Morphisms of value relations (i.e., the value squares) are de-

fined by simply ignoring the representation structures. That

is, amorphism of value relations𝛼 ∈ V′𝑠𝑞 ((𝑐, 𝜌𝐿𝑐 , 𝜌𝑅𝐹𝑐), (𝑐
′𝜌𝐿

𝑐′ , 𝜌
𝑅
𝐹𝑐′))

is simply a morphism of value relations inV𝑠𝑞 (𝑐, 𝑐′). Like-
wise for computations.

We define horizontal composition of relations and squares as

follows: Let 𝑐 : 𝐴 ◦−• 𝐴′ and 𝑐′ : 𝐴′ ◦−• 𝐴′′. We define

((𝑐, 𝜌𝐿𝑐 ,𝜌𝑅𝐹𝑐) • (𝑐
′, 𝜌𝐿𝑐′ , 𝜌

𝑅
𝐹𝑐′)) = (𝑐 • 𝑐

′, 𝜌𝐿𝑐•𝑐′ , 𝜌
𝑅
𝐹 (𝑐•𝑐′)),

and

((𝑑, 𝜌𝑅
𝑑
,𝜌𝐿
𝑈𝑑
) • (𝑑′, 𝜌𝑅

𝑑 ′ , 𝜌
𝐿
𝑈𝑑 ′)) = (𝑑 • 𝑑

′, 𝜌𝑅
𝑑•𝑑 ′ , 𝜌

𝐿
𝑈 (𝑑•𝑑 ′)),

where 𝜌𝐿
𝑐•𝑐′ , 𝜌

𝑅
𝐹 (𝑐•𝑐′) , 𝜌

𝑅
𝑑•𝑑 ′ , and 𝜌𝐿

𝑈 (𝑑•𝑑 ′) are as defined in Lemma

C.10.

Now we define the functors 𝐹 , 𝑈 , ×, and →. On objects, the

behavior is the same as the respective functors inM. For relations,

we define

𝐹 (𝑐, 𝜌𝐿𝑐 , 𝜌𝑅𝐹𝑐) = (𝐹𝑐, 𝜌
𝑅
𝐹𝑐 , 𝜌

𝐿
𝑈 𝐹 (𝑐)),

and

𝑈 (𝑑, 𝜌𝑅
𝑑
, 𝜌𝐿

𝑈𝑑
) = (𝑈𝑑, 𝜌𝐿

𝑈𝑑
, 𝜌𝑅

𝐹𝑈 (𝑑)),

where 𝜌𝐿
𝑈 𝐹 (𝑐) and 𝜌𝑅

𝐹𝑈 (𝑑) are as defined in the proof of Lemma

C.11.

We define

(𝑐1, 𝜌𝐿𝑐1 , 𝜌
𝑅
𝐹𝑐1
) × (𝑐2, 𝜌𝐿𝑐2 , 𝜌

𝑅
𝐹𝑐2
) = (𝑐1 × 𝑐2, 𝜌𝐿𝑐1×𝑐2 , 𝜌

𝑅
𝐹 (𝑐1×𝑐2)),

where 𝜌𝐿𝑐1×𝑐2 and 𝜌
𝑅
𝐹 (𝑐1×𝑐2) are as defined in the proof of Lemma

C.12.

Lastly, we define

(𝑐, 𝜌𝐿𝑐 , 𝜌𝑅𝐹𝑐) → (𝑑, 𝜌
𝑅
𝑑
, 𝜌𝐿

𝑈𝑑
) = (𝑐 → 𝑑, 𝜌𝑅

𝑐→𝑑
, 𝜌𝐿

𝑈 (𝑐→𝑑)),

where 𝜌𝑅
𝑐→𝑑

and 𝜌𝐿
𝑈 (𝑐→𝑑) are as defined in the proof of Lemma

C.13.

We now establish the quasi-order-equivalence for the functors.

We already showed that 𝑈 (𝑑 • 𝑑′) ≈ 𝑈 (𝑑)𝑈 (𝑑′) and 𝐹 (𝑐 • 𝑐′′) ≈
𝐹 (𝑐)𝐹 (𝑐′) in the proof of Lemma C.10. The other two properties

(𝑐𝑐′) → (𝑑𝑑′) ≈ (𝑐 → 𝑑) (𝑐′ → 𝑑′) and (𝑐1𝑐′
1
) × (𝑐2𝑐′

2
) ≈ (𝑐1 ×

𝑐2) (𝑐′
1
× 𝑐′

2
) are proved similarly, noting in both cases that the both

relations are quasi-represented by the same morphism.

C.3 Constructing an Extensional Model
We aim to prove the following lemma:

Lemma C.14. LetM be a step-4 intensional model. Then we can
define an extensional model.

Proof. Recall the extensional model construction outlined in

Section 5.3.3. We first establish the representability properties for

this model. We show the left-representability squares; the right-

representability squares are dual.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Eric Giovannini, Tingting Ding, and Max S. New

• We have the square

𝐴 𝐴′ 𝐴𝑟

𝐴′ 𝐴′ 𝐴𝑟

𝑐p 𝑐𝑟p
𝑒𝑐 push𝑐𝑟

(𝛿𝑟,𝑒𝑐)

𝑟 (𝐴′)p

𝛿
𝑟,𝑒
𝑐

𝑐𝑟
p

𝑒𝑐 id≈≈

• We have the square

𝐴𝑙 𝐴 𝐴

𝐴𝑙 𝐴 𝐴′

𝑐𝑙 𝑟 (𝐴)

𝑐𝑙 𝑐

id 𝑒𝑐𝛿
𝑙,𝑒
𝑐pull𝑐𝑙

(𝛿𝑙,𝑒𝑐) 𝑒𝑐≈ ≈

We observe that the functoriality of the CBPV connectives on

relations up to order-equivalence is a direct consequence of the

functoriality of the CBPV connectives on relations up to quasi-order-

equivalence in the step-4 intensional model, since the perturbations

on both sides of the square are by definition bisimilar to the identity.

Likewise, the retraction properties for the relations Inj→ : 𝑈 (𝐷 →
𝐹𝐷) ◦−• 𝐷 , InjN : Nat ◦−• 𝐷 , and Inj× : 𝐷 ×𝐷 ◦−• 𝐷 hold because

they held up to delays in the intensional model, and the delays

disappear in the extensional model construction.

□

	Abstract
	1 Introduction
	1.1 Gradual Typing and Graduality
	1.2 Limitations of Prior Work
	1.3 Contributions

	2 Background on Guarded Domain Theory
	2.1 Ticked Cubical Type Theory

	3 Syntactic Theory of Gradually Typed Lambda Calculus
	4 Idealized Double Categorical Models of Graduality
	4.1 Double Categorical Semantics of Graduality
	4.2 Weakening the Double Category Semantics

	5 Revised Categorical Models of Graduality
	5.1 Extensional Models of Gradual Typing
	5.2 Intensional Models
	5.3 Constructing an Extensional Model

	6 Constructing a Concrete Model
	6.1 Guarded Lift Monad
	6.2 The Dynamic Type
	6.3 Adequacy

	7 Discussion
	7.1 Related Work
	7.2 Mechanization
	7.3 Comparison to Explicit Step-Indexing
	7.4 Synthetic Ordering
	7.5 Future Work

	References
	A Gradual Typing Syntax
	B Call-by-push-value
	B.1 Morphisms of CBPV Models
	B.2 Kleisli Actions of CBPV Type Constructors

	C Details of the Construction of an Extensional Model
	C.1 Constructing a Model with Perturbations
	C.2 Constructing a Model with Quasi-Representable Relations
	C.3 Constructing an Extensional Model

