
1

Notions of Stack-manipulating Computation and Relative
Monads
YUCHEN JIANG, University of Michigan, USA

RUNZE XUE, University of Michigan, USA

MAX S. NEW, University of Michigan, USA

We present relative monads in a call-by-push-value (CBPV) calculus as a common abstraction for stack-based

implementations of effects. This brings the powerful abstraction of monadic programming to lower-level

stack-based languages. We demonstrate the applicability of the relative monad by modeling stack-based

implementations of common monads used in functional programming as relative monads such as exceptions,

state, continuations and free monads. All examples are executable in Zydeco, a stack-based functional language

we have designed and implemented based on CBPV.

We also show that relative monads in CBPV are more compositional than monads in pure languages, since

they are relative to an ambient notion of effect. We show that any program written in CBPV can be translated

to one that uses an arbitrary relative monad, showing that the entire language of CBPV can be “overloaded”

and interpreted using an arbitrary effect. One consequence is that contrary to the situation with monads in

pure languages, all relative monads in CBPV can be mechanically extended to a relative monad transformer.

We outline potential applications to functional programming and verified compilation using stack-based

intermediate representations.

1 INTRODUCTION
Since Moggi’s seminal work [Moggi 1991], monads have become a wildly successful tool in two

main areas of programming languages. First, as Moggi originally showed, denotational models of

functional programming languages with effects are naturally modeled using monads. Secondly,

monads have become an indispensable programming abstraction for effects in functional languages,

most notably in Haskell, where core I/O primitives are made available through a monadic interface

[Peyton Jones and Wadler 1993; Wadler 1990].

The power of monads comes from their ability to “overload the semicolon” by instantiating a

quite simple structure: a type constructor, return and bind, satisfying some natural equations. For

programmers this means re-using do notation and combinators across many different instantiations

of the monad interface. For semanticists this means providing a simple recipe to construct mathe-

matical models of effectful languages. These are really two views on the same idea: the monadic

programmer is working with a shallowly embedded effectful programming language. Additionally,

programmers and semanticists alike have developed further refinements of monads such as monad

transformers and algebraic effects to work with programs or semantics that mix multiple effects in a

compositional way while still providing sensible equational reasoning principles that programmers

intuitively understand [Liang et al. 1995; Plotkin and Power 2001].

But the purview of effectful programming is hardly limited to abstract mathematical semantics

or embedded monadic programming. Most popular programming languages allow for relatively

free use of several effects: local and global mutable state, exceptions, threads, and operating system

services to name a few. The implementation of these effects is handled not by a source-language

programmer implementing a high-level monad interface but instead by the language implementor.
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While some effects may be directly implemented through dedicated hardware mechanisms such

as interrupts, most effects are essentially virtualized, not unlike those of the embedded monadic

programmer. A major difference is that the language implementor typically has a much lower-level

view of this virtualization. Effects are implemented using various techniques for stack manipulation:
stack walking, stack swapping, or passing of multiple continuations. Designing these effect imple-

mentations thus necessitates thinking at a lower level of abstraction than allowed in high-level

languages, which by design limit the control that programmers have over the stack structure.

However, some connections between monads and stacks are understood: correspondences between

monadic evaluators and stack-based abstract machines [Ager et al. 2005], as well as efficient monad

implementations in Haskell [Kiselyov and Ishii 2015].

We posit that adapting the monad interface to directly apply to lower-level languages such as

stack-based intermediate representations, could allow for the same modularity and compositionality

benefits of monads to be brought to bear on verified language implementation and low-level

programming. For instance, common intermediate representations could be instantiated with

different monad implementations to get backends supporting different language features. Further,

monad algebras and monad homomorphisms could be used to allow for programs written in

languages with different effects to safely call each other [Patterson et al. 2023].

In this paper, we show that it is possible to bring the benefits of the monad abstraction to

lower-level stack-based implementations of effects. We approach the problem by working in a

calculus for stack-manipulation: a polymorphic variant of Levy’s call-by-push-value (CBPV). Just

as 𝜆 calculus is the “standard model” of pure functional programming, we argue that CBPV should

be seen as a standard model for stack-manipulating computations. The key is that CBPV has two

kinds of types: the value types, which classify first class data that can be passed and returned in

functions, and the computation types, which classify programs that manipulate machine states.

In this work we take a dual view of computation types and view them as stack types that classify
stack structures with which a computation interacts

1
.

We demonstrate stack-based programming abstractions and examples using a language we are

developing based on CBPV called Zydeco. Zydeco extends CBPV with nominal data and codata

types as well as ∀/∃ polymorphism in the style of System 𝐹𝜔 . We have developed a basic language

implementation including a bidirectional type checker, basic I/O primitives and a stack-based

interpreter, and all of our code examples are executable Zydeco code. We describe the syntax and a

stack-machine operational semantics for Zydeco in Section 3 to demonstrate how CBPV programs

can be viewed in terms of stack manipulation.

We give example implementations of effects, adapting techniques from monadic programming

and language implementation. We then observe that the monadic interface is not directly applicable

as an abstraction because the notion of “monad” we use has the wrong kind. In Zydeco, the natural

notion of “monad” has kind VType → CType, as it takes a value type 𝐴 to a computation type

that describes how the stack must be structured for an 𝐴-returning computation to run. That

is, our “monads” are not even endofunctors. Fortunately, as Altenkirch, Chapman and Uustalu

showed, “monads need not be endofunctors”, in that we can generalize monads to relative monads

[Altenkirch et al. 2010]. We give a definition of a relative monad in Zydeco and show some common

programming patterns: several common monads, algebras of a monad and monad transformers can

all be adapted to this relative setting.

We then demonstrate how the power of monadic abstraction can be adapted to our relative

monads in CBPV. First, we show that relative monads provide an even stronger form of over-

loadability than ordinary monads: all constructions on computation types can be overloaded to an

1
this duality can be viewed as a variant of linear logic duality, see Egger et al. [2014]
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arbitrary relative monad. That is, for any relative monad, there is a CBPV to CBPV translation that

reinterprets the ambient notion of effect in the source as the given relative monad
2
.

A consequence of this perfect overloadability of CBPV is that unlike the situation in 𝜆-calculus,

any relative monad in CBPV can be mechanically extended to a relative monad transformer. We

show that this has application to monad transformers for pure languages. Since pure languages

can be seen as a trivial model of CBPV with no effects, any relative monad (transformer) in CBPV

can be interpreted as a monad (transformer) in 𝜆-calculus, and so any relative monad in CBPV

determines a monad transformer in 𝜆-calculus. This gives an intuitive explanation for how standard

monad transformers arise in practice.

The remainder of the paper is structured as follows:

(1) In Section 2 we discuss related work.

(2) In Section 3 we describe Zydeco, our concrete syntax for CBPV programming and introduce

CBPV programming features by example before providing formal syntax and operational

semantics as a stack machine.

(3) In Section 4 we introduce relative monads as a programming abstraction in Zydeco and

demonstrate through several examples how we can use Zydeco’s stack-machine semantics to

reason about different implementations of stacks for effectful computations.

(4) In Section 5 we introduce the abstractions of algebras, which give a method for constructing

stacks for effects and relative monad transformers which give ways to combine monads

together.

(5) In Section 6 we prove a theorem we call the fundamental theorem of CBPV relative monads
which says that all constructs in CBPV can be overloaded to an arbitrary monad.

(6) In Section 7, by applying the fundamental theorem we show that all relative monads in CBPV

can be extended to relative monad transformers.

(7) In Section 8 we discuss future work.

2 RELATEDWORK
Our Zydeco language and semantics is based on Levy’s original CBPV syntax and stack-machine

semantics [Levy 2001]. Downen and Ariola [Downen and Ariola 2018] further discussed how

different calling conventions can be modeled as conservative extensions to Levy’s CBPV through

the shifts between positive and negative types, which is similar to our use of CBPV for encoding

stack representations. Binder et al. [Binder et al. 2022] introduced the concept of data and codata

symmetry and transformations back and forth between the two, named defunctionalization and

refunctionalization. The syntax of codata declaration and the stack semantics in Zydeco are inspired

by their work.

The notion of relative monad we use in this work is relative to a profunctor 𝐽 : V𝑜𝑝 × E → 𝑆𝑒𝑡 ,

which is not the most well-studied from the literature where 𝐽 is instead assumed to be a functor
𝐽 : V → E [Altenkirch et al. 2010; Arkor and McDermott 2023a]. If we assume the CBPV model

we work with has all returner types, then our notion of relative monad is equivalent to a monad

relative to 𝐹 . However, the formulation in terms of a profunctor more directly corresponds to the

natural syntactic formulation we use and demonstrates that the concept of a CBPV relative monad

makes sense even if the 𝐹 type is not assumed to exist. The formulation in terms of a profunctor

has been noted by Levy in a talk, and Arkor and McDermott point out that it is equivalent to a

monad 𝑇 : V𝑜𝑝 → 𝑆𝑒𝑡 E relative to 𝐽 : V𝑜𝑝 → 𝑆𝑒𝑡 E that happens to be representable in that 𝑇

factors through the the Yoneda embedding: 𝑇 = 𝑌 ◦𝑇𝑜𝑝
where 𝑇 : V → E [Levy 2019].

2
We have not yet implemented this translation for Zydeco as it requires advanced features like a module system or typeclasses

features that have not been implemented. We discuss plans for future implementation in Section 8.1
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Free monads and their efficient implementations are covered in this paper. Same as us, the key idea

behind freer monad optimization is defunctionalization. By delaying the evaluation of continuations

(or the first argument of fmap), no fmap is need in the process of freer monad construction, thus

improving the overall performance. But different from the traditional tree-structured free monad

and its optimization under the name extensible effects [Kiselyov and Ishii 2015], our solution utilizes

the stack from CBPV, which is a heterogeneous list.

3 ZYDECO: A CBPV LANGUAGE FOR STACK MANIPULATION
In this section, we introduce Zydeco, a stack-based functional language based on CBPV. We

introduce the concrete syntax of Zydeco by a few examples, and then discuss its abstract syntax

and operational semantics using a stack machine.

3.1 Zydeco by Example
Zydeco is a ML/Haskell-like programming language but based on call-by-push-value (CBPV)

[Levy 2001] as its core calculus, rather than call-by-value or call-by-name/need evaluation. CBPV

introduces a distinction between values and computations which have their own corresponding

notions of value types and computation types. This separation allows for call-by-value and call-by-

name evaluation to be encoded using a mix of the two. Values are inert data that can be passed

around as first-class objects, and value types classify the possible forms this data may take. In

Zydeco, the value types, typically written as 𝐴,𝐴′ include both the usual basic data types like

integer, string, but also user-defined algebraic data types (sums of products) and the thunk type

Thunk 𝐵, whose values suspended computations, i.e., closures, of computation type 𝐵.

Computations are “imperative” programs that manipulate machine states. In Zydeco, we think

of these machine states as given by the stack in the stack machine semantics, and the computation

types classify what the computation is allowed to do to the machine state, or viewed in the dual,

the structure that the stack is allowed to take. First, we have a base type called OS that is the type

of computations that interact with the operating system. Next, there is the return type Ret 𝐴 which

classifies computations which may return 𝐴 values. We think of the stacks of Ret 𝐴 to be opaque

continuations.
Lastly, computation types include user-defined codata types, which are a dual construct to the

familiar algebraic data types[Abel et al. 2013; Binder et al. 2022]. Codata types allow for a kind of

“user defined stack frames”. Dual to how data types values are introduced using constructors and
eliminated by pattern matching on the constructor, codata types are eliminated by destructors are
introduced by copattern-matching, a form of pattern-match on the structure of the stack. One can

think of codata as a generalized representation of (polymorphic) function types that includes a

notion of dispatching. Section 3.1 illustrates encodings of different variations of function types
3
.

First, the ordinary CBPV function type A -> B is a codata type with a single destructor, the function

application is to push the destructor .arg onto the stack with the data of the argument to the

function. Dually, 𝜆 abstraction is a copattern match that pops the .arg off the stack. Next, the

optional argument function type A ->? B is encoded as a codata type with two destructors: .some
to push the argument onto the stack before running the computation 𝐵 and .none to run the

computation without any argument. To process different destructors in this scenario, a comatch
structure copattern-matches the top of the stack, popping off the destructor that it finds. Taking a

step further, a variadic function type uses a coinductive codata type. It provides two destructors:

.more to push more arguments onto the stack and .done to conclude the function call.

3
we take some liberties here with the concrete syntax of Zydeco, which as implemented does not allow for user-defined

infix operators
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Codata types can also be used to implement a form of interfaces as in object-oriented program-

ming. The user can choose from a set of destructors and push one onto the stack to invoke a

method, while the implementor pops it off the stack with a copattern match, and “dispatches” the

corresponding computation according to what’s on the stack.

codata A -> B where
| .arg(A): B

end

codata A ->? B where
| .some(A): B
| .none( ): B

end

codata A ->* B where
| .more(A): A ->* B
| .done( ): B

end

Fig. 1. Functions Are Codata Types

Because these types are all codata types, they can be combined together, providing a compositional

type language for defining stack structure. For instance we can define a function that takes at

least one argument as A ->+ B := A -> A ->* B. As examples program, in Section 3.1, we define two

functions. First, abort is a polymorphic function of type forall A. A ->+ Ret A which takes a variable

number of arguments and returns the first one. It works by popping the type A and argument x
off of the stack, and then defining a loop called unwind that copattern matches to see if there are

any remaining arguments. If there are more arguments, it continues, and otherwise it returns the

original argument x. Here unwind has type Thunk(A ->* Ret A), i.e., it is a closure and we explicitly

execute run it by ! unwind.
The second example is a simple command-line program that prints out a running total of user

input numbers to demonstrate basic CBPV programming. Zydeco has a built-in computation type

OS which is the type of the main computation to be run, analogous to Haskell’s IO (), but notably
OS is not a monad. Instead, I/O primitives are given in continuation-passing style. For example,

read_int has type Thunk(Thunk(Option Int -> OS) -> Thunk OS), taking a continuation for the int

that may be read and executing it. Here rather than using the equivalent Int ->? OS we use Option
to demonstrate ordinary pattern matching. To write to the console, we use the write_line function,
which has type Thunk(Str -> Thunk(OS) -> OS). Finally, we use a primitive function add of type

Thunk(Int -> Int -> Ret Int) for addition. Altogether the code follows a similar pattern to abort: we
define a tail recursive loop, using the Int parameter as the state, reading in integers one by one,

exiting if the read fails. If we do receive +Some(i), we use a do binding to add it to the old value to

get a new state, then print the current state and a message and continue reading. We note here that

the primitive CBPV do binding is not simply a monadic do. As this example shows, the continuation

in the do binding is not of type Return A but instead is the primitive base computation type OS.
This is a distinctive feature of CBPV: continuations of a do binding can be any computation type.

As we will make precise later, this ensures all computation types carry a primitive algebra structure

for the relative monad Return.

3.2 Syntax
The abstract syntax of Zydeco is depicted in Figure 3. There are three kinds of contexts, a nominal

context Σ of data/codata declarations, a context Δ of type variables with their kinds and a context

Γ of term variables with their value types. The notation (𝜙𝑖 )∗ denotes a sequence of 𝜙 syntax

structures, indexed by a natural number 𝑖 . A valid Zydeco top-level program is made up of type

declarations, term definitions that are values, and a main term of computation. We introduce the

kinds, types, values and computations in the type checking and the stacks in the stack machine

semantics shortly.

Zydeco has a standard nominal type system, allowing programmers to introduce new types

through data and codata declarations. Since the type declarations are mutually recursive, to check

all of them, we need to go through all of the type declarations in two passes, namely the extraction

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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def fn abort : forall A. A ->+ Ret A =
fn A -> fn x -> rec unwind ->
comatch
| .more _ -> ! unwind
| .done -> ret x
end

end

main
(rec (loop: Thunk (Int -> OS)) -> fn sum ->
! read_int { fn i? -> match i?

| +None() -> ! exit 0
| +Some(i) ->

do sum <- ! add i sum;
! write_int sum {
! write_line " = sum" {
! loop sum
}}

end })
0

end

Fig. 2. Two Code Examples

Decl Ctx Σ : · | Σ, 𝐺
Type Decl 𝐺 F data 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | 𝐶𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ )∗ end

| codata 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | .𝐷𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ : 𝐵𝑖 )∗ end

Kind 𝐾 F VType | CType | (𝐾)∗ → 𝐾

Type Ctx Δ F · | Δ, 𝑋 : 𝐾

Type Var 𝑋 : Id
Type 𝑇,𝐴, 𝐵 F 𝑋 (𝑇𝑖 )∗ | Thunk 𝑇 | Int | String | Ret 𝑇 | OS

Term Ctx Γ F · | Γ, 𝑥 : 𝑇

Term Var 𝑥 : Id
Value 𝑉 F 𝑥 | { 𝑀 } | 𝐶 (𝑇𝑖 )∗ (𝑉 ′𝑖 )∗ | halt

Computation 𝑀 F ret 𝑉 | do 𝑥 ← 𝑀 ;𝑀 | ! 𝑉
| let 𝑥 = 𝑉 in𝑀 | rec 𝑓 . 𝑀
| match 𝑉 ( | 𝐶𝑖 (𝑋𝑖 𝑗 )∗ (𝑥𝑖 𝑗 ′ )∗ → 𝑀𝑖 )∗ end
| comatch ( | .𝐷𝑖 (𝑋𝑖 𝑗 )∗ (𝑥𝑖 𝑗 ′ )∗ → 𝑀𝑖 )∗ end
| 𝑀 .𝐷 (𝑇𝑖 )∗ (𝑉 ′𝑖 )∗

Stack S F • | Kont(𝑥 . 𝑀) :: S | Dtor(.𝐷 (𝑇𝑖 )∗ (𝑉 ′𝑖 )∗) :: S

Fig. 3. The Syntax of Zydeco

pass and validation pass. The extraction pass collects kinding information from the type declaration

context Σ into a type context Δ, while the validation pass verifies the correctness of type usages,

ensuring all types are well-kinded as per the kinding judgments detailed in the following section.

The rules fairly standard and found in the appendix Appendix A.

While the actual implementation of the Zydeco type system is based on a bidirectional type

system [Dunfield and Krishnaswami 2022], for simplicity and readability, a simplified version of

the type system is presented. In Zydeco, all types can be classified by kind - VType for value types
and CType for computation types. For clarity, when a type is distinctly a value type, we denote it

with 𝐴 to signify our intention, and implicitly add a premise to check is VType kinded. Similarly,

for computation types, 𝐵 is used under the assumption of it being CType for analogous reasons.
We note that we depart slightly from Levy’s original CBPV syntax to emphasize our operational

view of CBPV. Levy’s original notation is briefer, writing Ret 𝐴 as 𝐹𝐴 and Thunk 𝐵 as𝑈𝐵. There

are two base value types Int and String, and one base computation type OS.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



Notions of Stack-manipulating Computation and Relative Monads 1:7

We present the typing rules in Figure 4, which are mostly standard for CBPV. First, we have the

rules for values, which include variables, thunks, which we denote with “suspenders” following the

Frank language [Lindley et al. 2017], and constructors of data types. In practice, we would extend

these rules with typing for primitives such as addition/printing. For simplicity, we include just one

primitive thunk halt to terminate a program of type OS. Next, we have the rules for computations.

The Ret rules are similar to a monad, with ret as the introduction rule and a bind for the elimination,

but with an arbitrary computation type allowed for the continuation. We can force a Thunk B to

get a B computation. We add standard let and recursion rules, though note that the recursive rule

must put a Thunk B into the context, as all variables are of value type. Finally we have rules for

pattern matching and copattern matching, which check that the cases all have the same output

type and are correctly typed with respect to the type definitions in scope. Lastly the destructor rule

applies a destructor to a computation of a codata type.

3.3 Operational Semantics with a Stack Machine
We present the operational semantics of Zydeco in Figure 5, using an abstract stack machine. The

configuration for the stack machine is a pair of the computation and the stack. The system halts

when the configuration ⟨ ! halt | •⟩ is encountered. Since we are mainly illustrating the stack

structure, we use the substitutions instead of environments for the sake of simplicity. The rules

that appear in Figure 5 are standard for a CBPV calculus with a stack machine, similar to Levy’s

original stack machine semantics. A bind pushes a continuation onto the stack, and dually a return

will pop off the continuation and execute it with the provided value. Forcing a thunk executes the

suspended computation within. Let, rec and pattern matching are straightforward. Finally, placing

a destructor on a computation𝑀 .𝐷 (𝑇𝑖 )∗ (𝑉𝑖′ )∗ pushes the destructor onto the stack and continues

executing𝑀 , whereas a copattern match correspondingly pattern matches against the current stack

to determine which branch to execute.

4 RELATIVE MONADS IN ZYDECO
Next we turn to the question of how to virtualize effectful computations in Zydeco. We see that a

pattern similar to ordinary monads arises, but needs to be refined to a relative monad. We give an

interface for relative monads in Figure 6, described as a computation type with two destructors: ret
and bind. This is a straightforward translation of the ordinary monad interface, but crucially, the

natural kinding for the monadM is VType -> CType. We describe the appropriate monad laws after

a few examples.

4.1 Virtualizing Exceptions
To start, we consider the classic example of an exception monad in order to show how the stack

layout of monad implementations can be flexibly declared and optimized. The most straightforward

adaptation of the classic exception monad is by returning a value of Either type as shown in Figure 7.
Because we are in a CBPV setting, we require the Either to be wrapped in a Ret. Intuitively, Ret
represents the computation that passes the Either typed value to the continuation stored on top

of the stack. The implementation of this relative exception monad structure is a straightforward

translation of the ordinary exception monad structure. The outermost comatch dispatches the call

to either the .return “method” or the .bind “method”. The part fn .done → is a syntactic sugar for

comatch with only one destructor.

Although this implementation is common for virtualizing exceptions in Haskell, OCaml and Rust,

it has downsides from the perspective of implementing an efficient low-level exception mechanism.

The first problem is excessive use of data constructors and pattern matching: every .bind in the

execution trace creates a branch upon pattern matching. Since branch misprediction is a major
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Δ ⊢ 𝑇 : 𝐾 type (constructor) 𝑇 has kind 𝐾 under kinding context Δ

Δ ⊢ 𝑋 : (𝐾𝑖 )∗ → 𝐾 Δ ⊢ 𝑇𝑖 : 𝐾𝑖
Δ ⊢ 𝑋 (𝑇𝑖 )∗ : 𝐾

[TyTApp]

Δ ⊢ Int : VType
[TyInt]

Δ ⊢ String : VType
[TyString]

Δ ⊢ OS : CType
[TyOS]

Δ ⊢ 𝑋 : CType

Δ ⊢ Thunk 𝑋 : VType
[TyThunk]

Δ ⊢ 𝑋 : VType

Δ ⊢ Ret 𝑋 : CType
[TyReturn]

Δ; Γ ⊢ 𝑉 : 𝐴 𝑉 has type 𝐴

𝑥 : 𝐴 ∈ Γ
Δ; Γ ⊢ 𝑥 : 𝐴

[ValueVar]

Δ; Γ ⊢ 𝑀 : 𝐵

Δ; Γ ⊢ { 𝑀 } : Thunk 𝑇
[ValueThunk]

Δ; Γ ⊢ halt : Thunk OS
[ValueHalt]

data 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | 𝐶𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ )∗ end ∈ Σ
∃𝑖,𝐶 = 𝐶𝑖 𝛿 = (𝑇𝑘/𝑋𝑘 )∗ 𝛿 ′ = (𝑇𝑗/𝑋𝑖 𝑗 )∗ Δ, (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗; Γ ⊢ 𝑉𝑗 ′ : 𝐴𝑖 𝑗 ′ [𝛿] [𝛿 ′]

Δ; Γ ⊢ 𝐶 (𝑇𝑗 )∗ (𝑉𝑗 ′ )∗ : 𝑋 (𝑇𝑘 )∗
[ValueCtor]

Δ; Γ ⊢ 𝑀 : 𝐵 𝑀 has type 𝐵

Δ; Γ ⊢ 𝑉 : 𝐴

Δ; Γ ⊢ ret 𝑉 : Ret 𝐴
[CompuReturn]

Δ; Γ ⊢ 𝑀1 : Ret 𝐴 Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑀2 : 𝐵

Δ; Γ ⊢ do 𝑥 ← 𝑀1 ;𝑀2 : 𝐵
[CompuBind]

Δ; Γ ⊢ 𝑉 : Thunk 𝐵

Δ; Γ ⊢ ! 𝑉 : 𝐵
[CompuForce]

Δ; Γ ⊢ 𝑉 : 𝐴 Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Δ; Γ ⊢ let 𝑥 = 𝑉 in𝑀 : 𝐵
[CompuLet]

Δ; Γ, 𝑥 : Thunk 𝐵 ⊢ 𝑀 : 𝐵

Δ; Γ ⊢ rec 𝑥 . 𝑀 : 𝐵
[CompuRec]

Δ; Γ ⊢ 𝑉 : 𝑋 (𝑇𝑘 )∗ data 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | 𝐶𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ )∗ end ∈ Σ
𝛿 = (𝑇𝑘/𝑋𝑘 )∗ ∀𝑖 . Δ, (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗; Γ, (𝑥𝑖 𝑗 ′ : 𝐴𝑖 𝑗 ′ [𝛿])∗ ⊢ 𝑀𝑖 : 𝐵

Δ; Γ ⊢ match 𝑉 ( | 𝐶𝑖 (𝑋𝑖 𝑗 )∗ (𝑥𝑖 𝑗 ′ )∗ → 𝑀𝑖 )∗ end : 𝐵
[CompuMatch]

codata 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | .𝐷𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ : 𝐵𝑖 )∗ end ∈ Σ
𝛿 = (𝑇𝑘/𝑋𝑘 )∗ ∀𝑖 . Δ, (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗; Γ, (𝑥𝑖 𝑗 ′ : 𝐴𝑖 𝑗 ′ [𝛿])∗ ⊢ 𝑀𝑖 : 𝑋 (𝑇𝑖 [𝛿])∗

Δ; Γ ⊢ comatch ( | .𝐷𝑖 (𝑋𝑖 𝑗 )∗ (𝑥𝑖 𝑗 ′ )∗ → 𝑀𝑖 )∗ end : 𝑋 (𝑇𝑘 )∗
[CompuCoMatch]

Δ; Γ ⊢ 𝑀 : 𝑋 (𝑇𝑘 )∗ codata 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | .𝐷𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ : 𝐵𝑖 )∗ end ∈ Σ
∃𝑖, 𝐷 = 𝐷𝑖 Δ; Γ ⊢ 𝑇𝑗 : 𝐾𝑖 𝑗 𝛿 = (𝑇𝑘/𝑋𝑘 )∗ 𝛿 ′ = (𝑇𝑗/𝑋𝑖 𝑗 )∗ Δ; Γ ⊢ 𝑉 ′𝑗 : 𝐴𝑖 𝑗 [𝛿] [𝛿 ′]

Δ; Γ ⊢ 𝑀 .𝐷 (𝑇𝑗 )∗ (𝑉 ′𝑗 )∗ : 𝐵𝑖 [𝛿]
[CompuDtor]

Fig. 4. Kinding and Typing for Zydeco

headache of modern compiler optimization, it’s undoubtedly better to avoid branches when we

can. The other problem is the redundancy on the +Left(𝑒) case. It’s merely reconstructing into the

data type for a cold branch, but as a library author, we have no choice but to explicitly state the

whole matcher branch while implementing the monad instance.
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⟨𝑀 | S⟩ −→ ⟨𝑀 ′ | S′⟩ 𝑀 with stack S steps to𝑀 ′ with stack S′

⟨do 𝑥 ← 𝑀1 ;𝑀2 | S⟩ −→ ⟨𝑀1 | Kont(𝑥 . 𝑀2) :: S⟩
[OpBind]

⟨ret 𝑉 | Kont(𝑥 . 𝑀) :: S⟩ −→ ⟨𝑀 [𝑉 /𝑥] | S⟩
[OpRet]

⟨ ! { 𝑀 } | S⟩ −→ ⟨𝑀 | S⟩
[OpForceThunk]

⟨let 𝑥 = 𝑉 in𝑀 | S⟩ −→ ⟨𝑀 [𝑉 /𝑥] | S⟩
[OpLet]

⟨rec 𝑥 . 𝑀 | S⟩ −→ ⟨𝑀 [{ rec 𝑥 . 𝑀 }/𝑥] | S⟩
[OpRec]

⟨match (𝐶𝑖 (𝑇𝑗 )∗ (𝑉𝑗 ′ )∗) ( | 𝐶𝑖 (𝑋𝑖 𝑗 )∗ (𝑥𝑖 𝑗 ′ )∗ → 𝑀𝑖 )∗ end | S⟩ −→ ⟨𝑀𝑖 [(𝑇𝑗/𝑋𝑖 𝑗 )∗] [(𝑉𝑗 ′/𝑥𝑖 𝑗 ′ )∗] | S⟩
[OpMatch]

⟨𝑀 .𝐷 (𝑇𝑖 )∗ (𝑉𝑖′ )∗ | S⟩ −→ ⟨𝑀 | Dtor(.𝐷 (𝑇𝑖 )∗ (𝑉𝑖′ )∗) :: S⟩
[OpDtor]

⟨comatch ( | .𝐷𝑖 (𝑋𝑖 𝑗 )∗ (𝑥𝑖 𝑗 ′ )∗ → 𝑀𝑖 )∗ end | Dtor(.𝐷 (𝑇𝑗 )∗ (𝑉𝑗 ′ )∗) :: S⟩
−→ ⟨𝑀𝑖 [(𝑇𝑗/𝑋𝑖 𝑗)∗] [(𝑉𝑗 ′/𝑥𝑖 𝑗 ′ )∗] | S⟩

[OpComatch]

Fig. 5. Operational Semantics of Zydeco via a Stack Machine

codata Monad (M: VType -> CType) where
| .return : forall (A: VType) .

A -> M A
| .bind : forall (A: VType) (A': VType) .
Thunk (M A) -> Thunk (A -> M A') -> M A'

end

Fig. 6. figure
Definition of the Relative Monad

codata Exn (E: VType) (A: VType) where
| .done : Ret (Either E A)

end

def fn mexn (E: VType) : Monad (Exn E) =
comatch
| .return A a -> fn .done -> ret +Right(a)
| .bind A A' m f ->

do a? <- ! m .done;
match a?
| +Left(e) -> fn .done -> ret +Left(e)
| +Right(a) -> fn .done -> ! f a
end

end
end

Fig. 7. Exception Monad using Sum Types

One well-known optimization is for a potentially erroring computation to be implemented

by passing two continuations: the ordinary return continuation and the exception continuation.

This technique is sometimes called “double-barreled” continuation-passing style [Thielecke 2001].

We prefer to refer to it as Church-encoding. We can easily tell from the implementation of the

monad interface that different from the last solution, no intermediate data constructor is produced,

eliminating unnecessary conditional branching as the control flow is carried out by invoking the

correct continuation directly. As we are in a continuation-passing style now, the stack grows only

by the continuations themselves growing bigger and bigger along the way, eventually being run

when a return or raise is executed.

A third method for implementing raising of exceptions is via explicit stack-walking to find the

nearest enclosing exception handler. We can encode this structure as well in Zydeco by using a coin-

ductive codata type, which we can view as “defunctionalizing” the continuations into explicit stack
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codata ExnK (E: VType) (A: VType) where
| .run : forall (R: CType) .

Thunk (E -> R) -> Thunk (A -> R) -> R
end

def fn mexnk (E: VType) : Monad (ExnK E) =
comatch
| .return A a ->

fn .run R ke ka ->
! ka a

| .bind A A' m f ->
fn .run R ke ka ->
! m .run R ke
{ fn a -> ! f a .run @(R) ke ka }

end
end

Fig. 8. Exception Monad using Church Encoding

frames [Reynolds 1972; Wand 1980]. Figure 9 shows the final version that describes continuations

as different handlers. By removing the unnecessary pair of handlers in favor of dedicated handlers,

bind is simply pushing .kont onto the stack, but return and fail inspect and traverse the stack of

handlers, and apply them accordingly. The user push .try handlers onto the stack to perform error

handling.

codata ExnDe (E: VType) (A: VType) where
| .try : forall (E': VType) .

Thunk (E -> ExnDe E' A) -> ExnDe E' A
| .kont : forall (A': VType) .

Thunk (A -> ExnDe E A') -> ExnDe E A'
| .done : Ret (Either E A)

end

def rec fn mexnde (E: VType) : Monad (ExnDe E) =
comatch
| .return -> fn A a ->
comatch
| .try -> fn E' k -> ! mexnde @(E') .return @(A) a
| .kont -> fn A' k -> ! k a
| .done -> ret +Right(a)
end

| .bind -> fn A A' m f ->
! m .kont @(A') f

end
end

Fig. 9. Exception Monad, defunctionalized

4.2 Relative Monad Laws
Though we’ve shown the type signature of the relative monad in Zydeco and seen it in practice

in the implementation of the “exception monad” in Zydeco, we haven’t yet stated the equations

that need to be held. To define a monad, one needs to define its Kleisli triple and prove that the

monad laws hold. We’ve shown three instances of Kleisli triples for the relative monad in Zydeco,

giving the type constructor𝑀 (the object mapping) of kind VType→ CType, the return function

𝑟𝑒𝑡𝑢𝑟𝑛 (the unit) of type 𝐴 → 𝑀 𝐴 for any 𝐴 : VType, and the bind function 𝑏𝑖𝑛𝑑 (the Kleisli
extension) of type Thunk (𝑀 𝐴) → Thunk (𝐴→ 𝑀 𝐴′) → 𝑀 𝐴′ for any 𝐴,𝐴′ : VType. The codata
type declaration of Monad in Figure 6 captures the interface of the Kleisli triple by describing its

stack layout. But implementing an instance of Monad that’s not enough to show that it’s a relative

monad. The relative monad laws must also hold.

Definition 4.1. An implementation of return and bind are lawful if they satisfy the following

equational principles:

(1) The right unital law: ! bind { ! return 𝑎 } 𝑓 ≡ ! 𝑓 𝑎 for any 𝑎 : 𝐴 and 𝑓 : Thunk (𝐴→ 𝑀 𝐴),
(2) The left unital law: ! bind𝑚 return ≡ !𝑚 for any𝑚 : Thunk𝑀 𝐴,

(3) The associativity law: ! bind { ! bind𝑚 𝑓 } 𝑔 ≡ ! bind𝑚 { fn 𝑥 → ! bind { ! 𝑓 𝑥 } 𝑔 } for
any 𝑓 : Thunk (𝐴→ 𝑀 𝐴′), 𝑔 : Thunk (𝐴′ → 𝑀 𝐴′′), and𝑚 : Thunk (𝑀 𝐴),

(4) The linear bind law: do 𝑚 ← ! 𝑡𝑚 ; ! bind 𝑚 ≡ ! bind { do 𝑚 ← ! 𝑡𝑚 ; ! 𝑚 } for any
𝑡𝑚 : Thunk (Ret (Thunk (𝑇 𝐴))).
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The first three laws are the same as the laws for ordinary monads, and correspond to intuitive

program equivalences for effectful programming. The third, the linear bind law, is a new law that is

necessary in a system like CBPV which may have ambient effects, as opposed to ordinary monads

which are defined in a “pure” language. Intuitively, bind being linear states that it uses its first input

strictly and never again. For instance, if bind simply pushes something onto the stack and executes

the thunk, then it will be linear. The precise formulation used here says that for tm a “double thunk”,

it doesn’t matter if we evaluate tm first, and bind the resulting thunk or if we bind a thunk that

will evaluate tm each time it is called. This formulation is taken from prior work on CBPV [Levy

2017; Munch-Maccagnoni 2014]. One motivation for why the linearity rule is necessary is that we

want a relative monad to “overload” not just the do notation that the primitive Ret type provides,
we also want all of the reasoning principles that the Ret provides to hold for relative monads. And

the bind for Ret simply pushes a continuation onto the stack and executes the input, so it is linear.

We can verify that the first two exceptionmonads we provided satisfy themonad laws using CBPV

𝛽𝜂 equality or parametric reasoning, but the defunctionalized exception monad implementation

does not! The reason is that by defunctionalizing the stack of continuations, we expose low-level

details and so “non-standard” computations can inspect the stack and observe, for instance, the

number of frames pushed onto the stack. As a result, while the right unital law and bind linearity

law hold, the left unital law and the associativity law fail, with a counter-example provided in

Figure 10. This counter example counter-example works similarly to abort, looping through and

counting the number of stack frames using an accumulator. To show observational difference, we

can pass to bench two functions that should be equal under the left unital law or the associativity

law, and look at the program output. ‘! count-kont‘, as its name indicates, performs a stack walk

and distinguishes impls by their number of .kont frames.

def rec fn count_kont
(E: VType) (A: VType) (i: Int)
(fi: Thunk (Int -> ExnDe E A))

: ExnDe E A =
comatch
| .try -> fn E' ke ->

! count_kont @(E') @(A) i
{ fn i -> ! fi i .try @(E') ke }

| .kont -> fn A' ka ->
do i' <- ! add i 1;
! count_kont @(E) @(A') i'
{ fn i -> ! fi i .kont @(A') ka }

| .done ->
! fi i .done

end
end

alias ExnCounter = ExnDe Unit Int end

def fn bench
(impl: Thunk (Thunk (ExnCounter) -> ExnCounter))

: Ret Int =
do i? <- ! impl {
! count_kont @(Unit) @(Int) 0
{ ! mexnde @(Unit) .return @(Int) }

} .done;
match i?
| +Left(e) -> ret -1
| +Right(i) -> ret i
end

end

Fig. 10. Counter example counter-example

The root cause of the problem with count_kont is that it involves unrestricted manipulations

on the stack frame, yet a canonical instance of the exception monad, when executed, should

only compute its result -either an exception or a valid value-and react to one of the destructors

correspondingly. We henceforth propose a canonicity condition for these instances as shown below,

whereM is an arbitrary computation of type Exn 𝐸 𝐴.

𝑀 ≡ do 𝑥 ← 𝑀 .done ;

match 𝑥

| +Left(𝑒) → ! fail 𝑒

| +Right(𝑎) → ! return 𝑎
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We verify in Appendix B that this condition ensures the monad laws hold. This is of course a strong

restriction, and essentially ensures the implementor of a Exn E A computation only interacts with

the monad by calling fail, return, and bind,

4.3 More Examples of Relative Monads in Zydeco
Next we demonstrate how to adapt several classical monads to relative monads in Zydeco. Here

we list the type signatures of the monads that one can implement in Zydeco. We omit most of the

implementations of the monads due to their similarity to the examples of exception monad shown,

but they are included in the supplementary material.

First, the primitive return type in Zydeco Ret is itself a relative monad. The implementation is

shown in Figure 11. The return of 𝑎 is simply ret 𝑎, and the bind utilizes the primitive notion of

do-binding. In fact, the Ret monad plays the same role in Zydeco that the Identity monad does in

Haskell, representing “no effects” or at least no more than the ambient notion of effect allowed by

our primitives.

def fn mret : Monad Ret =
comatch
| .return A a -> ret a
| .bind A A' m f ->

do a <- ! m;
! f a

end
end

Fig. 11. The Implementation of Ret Monad in Zydeco

We give the types of the two continuation monads Kont and PolyKont and state monad State in
Figure 12. The first continuation monad Kont is the one with fixed answer type R. The intuition is

that a stack for Kont is an R stack with a continuation on top. Since R is fixed, the computation can

interact with the stack before invoking the continuation (if ever). For instance, by picking R to be

OS, we can get Zydeco’s analog of Haskell’s IO monad. The second continuation monad PolyKont
looks similar at first to Kont but the R parameter is universally quantified. Since the R is universally

quantified, by parametricity the computation cannot interact with the R stack except by calling

the continuation. For this reason, using parametric reasoning it can be proven that PolyKont is
equivalent to Ret, and so we might call PolyKont the church-encoded Ret type [Møgelberg and

Simpson 2009; Reynolds 1983]. For this reason it is also possible to leave the Ret type out of Zydeco
as a primitive type entirely, since it can be defined as this Church encoding. Finally, the state monad

provides a “thread-local” state that can be read and mutated by the computation. Reading off of the

stack semantics, the state is conceptually updated “in-place”.

codata Kont (R: CType) (A: VType) where
| .run : Thunk (A -> R) -> R

end

codata PolyKont (A : VType) where
| .bind : forall R. Thunk (A -> R) -> R

end

codata State (S: VType) (A: VType) where
| .run : forall (R: CType) .
Thunk (A -> S -> R) -> S -> R

end

Fig. 12. The Types of State Monad and Continuation Monads in Zydeco

Next, we turn to another general class of monads, free monads generated by a collection of

operations. A free monad records a sequence of computations with giving them any a priori
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alias KRead (R: CType) =
Thunk (Unit -> Kont R String)

end
alias KWrite (R: CType) =

Thunk (String -> Kont R Unit)
end
alias KFail (E: VType) (R: CType) =

Thunk (E -> Kont R Empty)
end
codata Free (A: VType) where

| .run : forall (R: CType) .
KRead R -> KWrite R -> KFail String R -> Kont R A

end

def fn mfree : Monad Free' =
comatch
| .return A a ->

fn .run R read write fail ->
fn .run k -> ! k a

| .bind A A' m f ->
fn .run R read write fail ->
fn .run k' ->
! m .run @(R) read write fail
.run {

fn a ->
! f a .run @(R) read write fail
.run k'

}
end

end

Fig. 13. An Example of The Free Monad in Zydeco

def fn read (s: Unit) : Free String =
fn .run R read write fail -> ! read +Unit()

end

def fn write (s: String) : Free Unit =
fn .run R read write fail -> ! write s

end

def fn fail (s: String) : Free Empty =
fn .run R read write fail -> ! fail s

end

def fn read_os (_: Unit) : Kont OS String =
fun .run k -> ! read_line k

end

def fn write_os (s: String) : Kont OS Unit =
fun .run k -> ! write_line s { ! k +Unit() }

end

def fn fail_os (s: String) : Kont OS Empty =
fun .run k -> ! panic s

end

Fig. 14. Operations and Handlers for a Free Monad

semantic meaning. It allows the user to declare the computations in mind and later provide

implementations of handlers for these computations. Different from the traditional tree-structured

free monad like in Haskell, the free monad in Zydeco consists of a function from a tuple of handlers

on the stack to a continuation monad at the bottom. Intuitively, different handlers can be passed at

the “runtime” of the computation, providing different behavior, context, or in general, semantics,

for the recipe of monadic computations that the user declared in advance; while the continuation

at the end is both the carrier of the monadic operations provided by the user and a chance of

interaction with the side effects brought by the handlers. The constraint on the handlers is that the

handlers have the same base stack as the continuation.

For example, as shown in Figure 13, there are three handlers on the stack of Free, each responsible
for handling read, print, and fail effects correspondingly. In an impure language, read would have

type Unit→ String. Translated under the CPS setup, we get Unit→ (String→ R) → R. Further
adopting it into CBPV leads us to its form presented in the example. Similar translation happens to

print and fail. fail also demonstrates how to encode an effect that can’t return a value. To use the

free monad, we also need to define both how to construct the free monad and how to interpret it,

which is shown in Figure 14.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1:14 Yuchen Jiang, Runze Xue, and Max S. New

codata Algebra (M: VType -> CType) (R: CType) where
| .bindA : forall (A: VType) .

Thunk (M A) -> Thunk (A -> R) -> R
end

Fig. 15. Algebra of a Relative Monad

def fn alg_ret (R: CType): Algebra Ret R =
comatch
| .bindA A m k ->

do a <- ! m; ! k a
end

end

def fn alg_mo
(M: VType -> CType)
(V: VType)
(mo: Thunk (Monad M))

: Algebra M (M V) =
comatch
| .bindA A m k ->

! mo .bind @(A) @(V) m k
end

end

Fig. 16. Two “trivial” algebra structures

5 ALGEBRAS OF RELATIVE MONADS AS THE HANDLERS FOR STACK-BASED
EFFECTS

Relative monads allow the programmer to express stack-manipulating computations, as demon-

strated in the previous section. Nevertheless, there are times when we desire to compute the monad

against a different stack provided by the user. Such need is fulfilled by algebras of relative monads,

whose definition is given in Figure 15. Intuitively, an algebra is a version of bind that works with

an output type not necessarily of the formM A. In terms of stacks, an algebra for𝑀 with carrier

type R gives a method for taking an R stack and a continuation U(A -> R) and constructing a stack

for anM A. Since algebras generalize bind, they should also generalize the monad laws for bind.

Specifically, all but the left unital law make sense and should be satisfied.

Definition 5.1. An algebra is lawful if it satisfies the following equational principles:

(1) The right unital law: ! bindA { ! return 𝑎 } 𝑓 ≡ ! 𝑓 𝑎 for any 𝑎 : 𝐴 and 𝑓 : Thunk (𝐴→ 𝑀 𝐵),
(2) The associativity law: ! bindA { ! bind𝑚 𝑓 } 𝑔 ≡ ! bindA𝑚 { fn 𝑥 → ! bindA { ! 𝑓 𝑥 } 𝑔 }

for any 𝑓 : Thunk (𝐴→ 𝑀 𝐴′), 𝑔 : Thunk (𝐴′ → 𝐵), and𝑚 : Thunk (𝑀 𝐴),
(3) The linear bind law: do 𝑚 ← ! 𝑡𝑚 ; ! bind 𝑚 ≡ ! bind { do 𝑚 ← ! 𝑡𝑚 ; ! 𝑚 } for any

𝑡𝑚 : Thunk (Ret (Thunk (𝑇 𝐴))).

In Figure 16, we give two of the simplest algebras of relative monads. First, we can define the

algebra of the Retmonad for any computation 𝑅 using the built-in do notation. And second, every

monad in Zydeco has an algebra to itself, using its own bind to implement bindA.
In fact, we can extend algebra structures to all codata types. We show representative examples

that extend algebra constructions on arrow (→) types and with (&) types demonstrated in Figure 17,

which covers a wide range of computation types in Zydeco. By providing the algebra of 𝑀 :

VType → CType for 𝑅 : CType, we can define for free the algebra of 𝑀 : VType → CType for
𝐴→ 𝑅 for any 𝐴 : VType. Similarly, we can define the algebra of𝑀 : VType→ CType for 𝐿&𝑅 for

any 𝐿, 𝑅 : CType given both of the algebra on 𝐿 and 𝑅.

We give an example for how to extend algebras to coinductive codata types in Figure 18. Specifi-

cally, given an algebra structure on B, we can extend this to an algebra structure on A ->* B by

popping the arguments off of the stack and pushing them into the continuation until we finally

reach the base case of a B stack, in which case we use B’s algebra structure with the accumulated

continuation.

What are algebras good for? They allow us to combine non-monadic results with monadic

computations. In fact we already have seen an example of this practice with the built-in monad: our
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def fn alg_arrow
(M: VType -> CType) (R: CType) (A: VType)
(alg: Algebra M R)

: Algebra M (A -> R) =
comatch
| .bindA A' m f -> fn a ->

! alg .bindA @(A) m { fn a' -> ! f a' a }
end

end

codata With (L: CType) (R: CType) where
| .l : L
| .r : R

end

def fn alg_with
(M: VType -> CType) (L: CType) (R: CType)
(algl: Thunk (Algebra M L))
(algr: Thunk (Algebra M R))

: Algebra M (With L R) =
comatch
| .bindA A m f ->

comatch
| .l -> ! algl .bindA @(A) m { fn a -> ! f a .l }
| .r -> ! algr .bindA @(A) m { fn a -> ! f a .r }
end

end
end

Fig. 17. Algebra structure for -> and &

def rec fn alg_var (M: VType -> CType) (R: CType) (alg: Thunk (Algebra M R)) (V: VType)
: Algebra M (FnVar V R) =

comatch
| .bindA A m ka ->

let rec fn loop (ka: Thunk (A -> FnVar V R))
: FnVar V R =

comatch
| .more v -> ! loop { fn a -> ! ka a .more v }
| .done -> ! alg .bindA @(A) m { fn a -> ! ka a .done }
end

in ! loop ka
end

end

Fig. 18. Algebra for 𝐴→∗ 𝐵

def fn alg_exn :
Algebra (ExnDe String) OS

=
comatch
| .bindA A m k ->

do a? <- ! m .done;
match a?
| +Left(s) -> ! panic s
| +Right(a) -> ! k a
end

end
end

main
(rec (loop: Thunk (Int -> OS)) ->
fn sum ->
! read_int { fn i? -> match i?

| +None() -> ! exit 0
| +Some(i) ->
! alg_exn .bindA @(Int) { ! add_of i sum } { fn sum ->
! write_int sum {
! write_line " = sum" {
! loop sum }}}

end }) 0
end

Fig. 19. The Echo Sum Server, Extended with a Fallible Addition

echo sum server from Section 3.2 used a do block where the result was OS and not a monad. With

algebras of relative monads in place, we can introduce new effects via monads without modifying

the structure of the original user program in Zydeco; instead, we can “overload” the do-binding in

the original program by providing a new algebra for the new effect. For example, consider what

would happen if we changed our addition function to one that raises an exception if the addition

overflows, i.e., add_of : Thunk(Int -> Int -> ExnDE Int). In Figure 19 we show that we can rewrite

our program from the built-in do-notation to use an explicit bindA operation. In this case the carrier

of the algebra is OS, so we need to provide an interpretation of what to do when there is an error.

In this case, we simply crash the program by calling a built-in panic function. Replacing the built-in
do notation with explicit bindA calls is certainly ugly, but the examples in this section show that in

principle we should be able to overload the do entirely. We formalize that this is possible in the

next section.
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codata MonadTrans (T: (VType -> CType) -> VType -> CType) where
| .monad : forall (M: VType -> CType) .

Thunk (Monad M) -> Monad (T M)
| .lift : forall (M: VType -> CType) (A: VType) .
Thunk (Monad M) -> Thunk (M A) -> T M A

end

Fig. 20. The Interface of Monad Transformers in Zydeco

codata ExnT (E: VType) (M: VType -> CType) (A: VType) where
| .done : M (Either E A)

end

def fn mtexn (E: VType) : MonadTrans (ExnT E) =
comatch
| .monad M mo ->

comatch
| .return A a -> fn .done ->

! mo .return @(Either E A) +Right(a)
| .bind A A' m f -> fn .done ->

! mo .bind @(Either E A) @(Either E A') { ! m .done }
{ fn a? ->

match a?
| +Left(e) -> ! mo .return @(Either E A') +Left(e)
| +Right(a) -> ! f a .done
end }

end
| .lift M A mo m -> fn .done ->

! mo .bind @(A) @(Either E A) m
{ fn a ->

! mo .return @(Either E A) +Right(a) }
end

end

Fig. 21. The Monad Transformer for Ret (𝐸𝑖𝑡ℎ𝑒𝑟 𝐸 𝐴)

5.1 Monad Transformers
As a final example of adapting monadic programming to CBPV, we consider monad transformers. A
monad transformer, defined in Figure 20 is a type 𝑇 : (VType→ CType) → VType→ CType such
that for any monad 𝑀 , 𝑇 (𝑀) is a monad, and we support a lift function that turns embeds 𝑀 𝐴

computations into 𝑇 𝑀 𝐴 computations. So a monad transformer is a way to “add” effects to an

input monad𝑀 .

Intuitively, all programs in CBPV are defined relative to some ambient base effects, so shouldn’t

it be the case that any relative monad should also be a monad transformer? Consider a couple of

illustrative examples. First, our original exception monad Exn defined in terms of Ret can easily

be turned into a monad transformer ExnT in Figure 21 by replacing Ret with the input monad

M. Then to implement the monad instance of 𝑇 𝑀 , change all references of primitive return and

do-binding to use corresponding operations inherited from the monad instance of 𝑀𝑇 . The lift
function can be transformed following the analogy of the left unital law, ! bind𝑚 return ≡ !𝑚 for

any𝑚 : Thunk 𝑀 𝐴, but use those provided by the monad instance of 𝑀 , and target 𝑀 𝑉 as the

output of the transformation.

This transformation is somewhat obvious because it uses Ret explicitly, but what about our
Church-encoded monads, which don’t explicitly use Ret? The key is that these Church-encoded

monads don’t mention Ret but they do quantify over computation types. We can mechanically

generate a monad transformer by generalizing from quantifying over computation types to quanti-

fying over algebras of the input monad. As another example, consider our second exception monad

ExnK which we transform into a monad transformer in Figure 22 The instance of monad for 𝑇 𝑀

shouldn’t be any different from the instance of monad for 𝑀𝑇 , and the lift function should be
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codata ExnKT (E: VType) (R: CType) (M: VType -> CType) (A: VType) where
| .run : Thunk (Algebra M R) -> Thunk (E -> R) -> Thunk (A -> R) -> R

end

def fn mtexnk (E: VType) (R: CType) : MonadTrans (ExnKT E R) =
comatch
| .monad M mo ->

comatch
| .return A a -> fn .run alg -> fn ke ka ->

! ka a
| .bind A A' m f -> fn .run alg -> fn ke ka' ->

do ! m .run alg ke; fn a ->
! f a .run alg ke ka'

end
| .lift M A mo m -> fn .run alg -> fn ke ka ->

! alg .bindA @(A) m ka
end

end

Fig. 22. The Monad Transformer for forall 𝑅 . Thunk (𝐸 → 𝑅) → Thunk (𝐴→ 𝑅) → 𝑅 in Zydeco

implemented by a bindA of the algebra of𝑀 on 𝑅, and passing in the continuation in𝑀𝑇 . Again

referring to the previous example of ExnK 𝐸 𝐴, the monad transformer of it is shown in Figure 22.

6 FUNDAMENTAL THEOREM OF CBPV RELATIVE MONADS
As we have seen, every computation type constructor in Zydeco can be extended to an operation

on algebras. This suggests that the built-in do notation in Zydeco could be “overloaded” to support

not just the built-in Ret type but an arbitrary relative monad, analogous to the familiar extensibility

of do notation for ordinary monads in Haskell. Note that since Zydeco’s do notation is based on

CBPV this is a more complex overloading. That is, in Haskell, the result type of an expression in do
notation is always the monad m a and the desugaring uses the monad structure of m, but in Zydeco

the result type is an arbitrary algebra, and the desugaring of the do notation is determined by the

algebra structure.

Because every computation type constructor can be extended to algebras, not only should do
notation be overloadable, but all language constructs (codata type definitions, introduction and

elimination rules) should be overloadable in Zydeco to be interpreted relative to an arbitrary relative

monad. In this section, we give a partial formalization of this result, that for any relative monad in

Zydeco, we can define a syntactic Zydeco to Zydeco translation that reinterprets the ambient effect

using the relative monad.

There are two caveats to our formalization which are current obstacles to implementation. First

we do not address recursive data/codata types, which we leave to future work to formalize. We do

fully expect the translation can be extended to codata types as described in Section 5. Secondly, the

translation of polymorphism over computation types (e.g., ∀ and ∃) is most conveniently expressed

to Zydeco containing Σ-kinds, which amounts to upgrading from System 𝐹𝜔 -style polymorphism

to an ML-style module system, which we do not currently have implemented in Zydeco [MacQueen

1984;Mitchell andHarper 1988].We discuss the feasibility of this and other potential implementation

strategies such as typeclasses in Section 8.1.

To avoid getting bogged down in irrelevant syntactic details such as name binding and type

annotations, we will formalize the overloadability theorem semantically. That is, we will define
a Zydeco model as an impredicative polymorphic CBPV model with function and Σ kinds, and

construct for any Zydecomodel with a relativemonad, a secondmodel of Zydecowhere computation

types are modeled as algebras of the relative monad. We call this theorem the fundamental theorem
of CBPV relative monads.
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We assume quite a bit more category theoretic background and familiarity with models of CBPV

of the reader in the body of this section and the next than other sections. In particular, to efficiently

work with CBPV models, we will extensively use the internal language of presheaf categories to

treat an arbitrary CBPV model as if the value types and kinds were given by subcategories of the

category of sets without any loss of generality. Readers less familiar with category theory can

safely read the beginnings of these sections to get an idea for the main results and skip over the

technical details on a first reading. We refer readers to a standard reference on the internal language

of presheaf categories such as [Maietti 2005].

6.1 What is a Model of Call-by-push-value?
Next, we introduce the notion of semantic model of CBPV that we will use in our algebra construc-

tion. We will do this first by introducing models of the basic judgmental structure (kinds, types,

values, stacks and computations) and then characterizing modularly by universal properties when

such a model additionally interprets each type constructor. As notation we will use PC to mean

the category of presheaves C𝑜𝑝 → 𝑆𝑒𝑡 . By (contravariant) presheaf we mean a functor C𝑜𝑝 → 𝑆𝑒𝑡

and covariant presheaf on C we mean C → 𝑆𝑒𝑡 . If not specified, presheaf means contravariant. We

give here four notions of CBPV model each of varying intuitiveness and practical utility:

Definition 6.1. (1) A unary CBPV model is a tripleV, E,J of a categoryV , a category E and

a profunctor 𝐽 : V𝑜𝑝 × E → 𝑆𝑒𝑡 .

(2) A strong CBPV model is a tripleV, E, C of a categoryV with finite products, a category E
enriched over PV , and C an enriched covariant presheaf on E.

(3) A dependent CBPV model is a triple V, E, C of a natural model of dependent type theory

V = (V𝑐 ,VTy,Val), a category E internal to PV𝑐 and an internal covariant presheaf on E.
(4) A concrete CBPV model is a tripleV, E, C of a universeV of sets, a category E and a covariant

presheaf C : E → 𝑆𝑒𝑡 .

(5) A polymorphic concrete CBPV model is a concrete CBPV model additionally equipped with a

second universe K .

A unary CBPV model is a model of the “unary” fragment of CBPV: that is it models value

types and computation types as objects, but it only models restricted judgments of unary values

(𝑥 : 𝐴 ⊢ 𝑉 : 𝐴′), computations 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 and stacks • : 𝐵 ⊢ 𝑆 : 𝐵′. Despite its over-simplicity,

the unary model is often the most intuitive: the profunctor 𝐽 modeling the computation judgment

is the central structure of a CBPV model.

Next, a strong CBPVmodel is a model of simply typed CBPV and is very similar to Levy’s original

notion used in CBPV adjunction models. The formulation here in terms of presheaf-enrichment is

due to Curien et al. [2016]. Strong models generalize unary models because we can reindex E to

be an ordinary category and define 𝐽 𝐴 𝐵 = C𝐴 (𝐵). Dependently typed CBPV models generalize

strong CBPV models by allowing value and computation types to be dependent on value types. The

value types and pure morphisms are essentially an ordinary model of dependent type theory, and

then computation types, computations stacks are internal to presheaves, which intuitively means

they are indexed by a context and contain an action of substitution which commutes with stack

composition. This notion is related to the one given by Ahman in the same way that comprehension

categories are related to natural models in the semantics of dependent type theory[Ahman et al.

2016; Awodey 2018]. It is also quite similar to the theory of dependent CBPV used in the work on

Calf, except that the Calf work does not include a stack judgment [Niu et al. 2022].

The final notion, that of a concrete model, breaks the pattern of increasing generality in that at

first it looks much less general than the prior ones, since it requires the categoryV to be a full
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subcategory of the category of sets. Despite this, it is the notion of model we will use throughout

this paper, because of the following:

Theorem 6.1. Every dependent CBPV model determines a concrete CBPV model internal to the
topos of presheaves onV𝑐 .

That is, internal to the topos of presheaves, the representable map of presheaves looks like a

universe of sets, and an internal category/presheaf look like an ordinary category/presheaf. Since

the internal language of a topos can model all of extensional intuitionistic type theory, we freely

work in this and the next section in terms of concrete models, knowing that this can be mechanically,

if laboriously, translated to corresponding statements about dependent CBPV models. Finally, a

polymorphic model additionally adds a universe K of “kinds”, though they do not look much like

kinds until we assume some type structure.

Now fix a concrete modelV, E, C of CBPV for the remainder of this section. We overloadV
to also refer to the full subcategory of 𝑆𝑒𝑡 given by sets in the universe V , and we define the

profunctor 𝐽 𝐴 𝐵 = C(𝐵)𝐴. We now give a brief overview of how these constructs correspond to

the judgments of CBPV. The intuition we have is that value types 𝑇 and contexts Γ denote objects

ofV , i.e., “small” sets, computation types denote objects of E and computations Γ ⊢ 𝑀 : 𝐵 denote

functions Γ → C(𝐵), i.e., 𝐽 Γ 𝐵. The morphisms of V are “pure functions” between value types,

which includes the denotations of syntactic values, and the morphisms of E are “linear” morphisms

between computation types which includes the denotations of syntactic stacks. We write the action

of 𝐽 on morphisms using composition syntax, i.e., we write (𝐽 𝐴 𝑙) ( 𝑗) as 𝑙 ◦ 𝑗 and (𝐽 𝑓 𝐵) ( 𝑗) as 𝑗 ◦ 𝑓 .
This models the composition of the “effectful” computation 𝑗 ∈ 𝐽 𝐴 𝐵 with a “pure” morphism 𝑓 or

a linear morphism 𝑙 , respectively, generalizing the syntactic operations of substituting a syntactic

value into a computation or “piling” a stack onto a computation. The functoriality ensures that the

implied unit and associativity laws for this notation are satisfied. Finally, kinds 𝑘 and kind contexts

Δ are interpreted as elements of the universe K and types Δ ⊢ 𝑇 : 𝑘 are interpreted as functions

between those sets.

We can now characterize when a concrete model has various type/kind structures by specifying

their universal properties.

Definition 6.2. (1) For 𝐵 ∈ E, a thunk object Thunk 𝐵 ∈ V is given by a universal “force”

morphism 𝐽 Thunk 𝐵 𝐵.
(2) For 𝐴 ∈ V , a return object Ret 𝐴 ∈ E is given by a universal “return” morphism ret ∈

𝐽 𝐴 Ret 𝐴.
(3) For 𝐼 a set and (𝐵𝑖 )𝑖∈𝐼 a family of objects of E, a product &𝑖∈𝐼𝐵𝑖 ∈ E is given by a universal

family of “projection” morphisms 𝜋𝑖 ∈ E(&𝑖∈𝐼𝐵𝑖 , 𝐵𝑖 ) that are distributive in that for every

𝐴 ∈ V , the family of maps J 𝐴𝜋𝑖 is also universal.

(4) For 𝐼 a set and (𝐴𝑖 )𝑖∈𝐼 a family of objects of V , a sum ⊕𝑖∈𝐼𝐴𝑖 ∈ V is given by a universal

family of “injection” morphisms 𝜎𝑖 ∈ V(𝐴𝑖 ,
∑

𝑖∈𝐼 𝐴𝑖 ) that are distributive in that for every

𝐵 ∈ E, the family J 𝜎𝑖 𝐵 is also universal.

(5) A kind of value objects is a kind VOb ∈ K given by a universal VOb→V0

(6) A kind of computation objects is a kind COb ∈ K given by a universal COb→ E0
(7) A function kind 𝑘

𝑘𝑖
𝑜 ∈ K for 𝑘𝑖 , 𝑘𝑜 ∈ K is given by a universal 𝑘𝑖 × 𝑘𝑘𝑖𝑜 → 𝑘𝑜 .

(8) A sigma kind 𝜎𝑋 :𝑘𝐴(𝑋 ) is given by a universal pair of projections 𝜋1 : 𝜎𝑋 :𝑘𝐴(𝑋 ) → 𝑘 and

𝜋2 : (𝑝 : 𝜎𝑋 :𝑘𝐴(𝑋 )) → 𝐴(𝜋1𝑝)
Wenote that the distributivity condition for products (respectively sums) is automatically satisfied

under the assumption that the model has all return (respectively thunk) objects.
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One difference between the syntax and semantics is that the semantics has primitive notions

of pure morphism (function between value objects) and linear morphism (morphism between

computation objects), whereas the syntax has a more restrictive notion of values and we only give

a primitive syntax for stacks in the CES semantics. The correct interpretation is that the morphisms

between value objectsV(𝐴,𝐴′) correspond in the syntax to thunkable terms 𝑥 : 𝐴 ⊢ 𝑀 : Ret𝐴′ and
similarly that computation morphisms E(𝐵, 𝐵′) correspond to linear terms 𝑧 : Thunk 𝐵 ⊢ 𝑀 : 𝐵′,
as described in [Munch-Maccagnoni 2014].

We can then define a Zydeco model to be a CBPV model that contains all the type structure in

our syntax, except removing recursive data/codata and adding sigma kinds.

Definition 6.3. A Zydeco model is a concrete CBPV model with all thunk objects and return

objects as well as

(1) Kinds of value objects, computation objects, function kinds and sigma kinds.

(2) Products indexed by 0 (modeling ⊤), 2 (modeling binary &), and objects of K (modeling

impredicative ∀) as well as for any 𝐵 ∈ E and 𝐴 ∈ V , a product &_∈𝐴𝐵 (modeling the CBPV

function type→).

(3) Sums indexed by 0 (modeling the empty type), 2 (modeling +), and V0 and E0 (modeling

impredicative ∃) as well as for any 𝐴,𝐴′ ∈ V a sum

∑
_∈𝐴𝐴

′
modeling the Cartesian product

type ×.

6.2 Relative Monads, Algebras and the Fundamental Theorem
Next we introduce relative monads in a concrete CBPV model. Note that this definition of a relative

monad requires no assumptions on type structure.

Definition 6.4. A CBPV relative monad consists of

(1) For each 𝐴 ∈ V , a type𝑀𝐴 ∈ E.
(2) For each 𝐴 ∈ V , an element 𝜂𝐴 : 𝐽 𝐴 (𝑀𝐴)
(3) For each 𝐴,𝐴′ ∈ V a function −† : 𝐽 𝐴 (𝑀𝐴′) → E(𝑀𝐴,𝑀𝐴′)
(4) Satisfying 𝜂† = id

(5) Satisfying 𝑗† ◦ 𝜂 = 𝑗

(6) Satisfying ( 𝑗† ◦ 𝑘)† = 𝑗† ◦ 𝑘†

This has a fairly direct correspondence to our programming notion of monad in Zydeco: the 𝜂

corresponds to the return, and the −† operation to the bind operation with arguments reordered, but

stated as families of set-theoretic functions rather than morphisms in CBPV, and with the linearity

assumption of the bind operation instead encoded by requiring that the −† operation return a

morphism in E. The Zydeco type is an internalization of the notion of a relative monad as a type,

and one can verify that the elements of the interpretation of our Zydeco type of monad structures

that satisfy the monad laws is isomorphic to a CBPV relative monad in this sense as long as E
morphisms correspond precisely to linear morphisms. Note that because we are working internally

to presheaves this notion of monads is automatically “strong” whether or not we internalize it, as we

can define a version of −† that works in an arbitrary context −† : 𝐽 𝐴 (Γ → 𝑀𝐴′) → E(𝑀𝐴, Γ →
𝑀𝐴′).

Definition 6.5. Let𝑀 be a CBPV relative monad forM. An algebra for𝑀 consists of

(1) A carrier object 𝐵 ∈ E
(2) For every 𝐴 a function −†𝐵 : 𝐽 𝐴 𝐵 → E(𝑀𝐴, 𝐵)
(3) Satisfying 𝑗†𝐵 ◦ 𝜂 = 𝑗

(4) Satisfying ( 𝑗†𝐵 ◦ 𝑘)†𝐵 = 𝑗†𝐵 ◦ 𝑘†
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Given two algebras (𝐵,−†𝐵 ) and (𝐵′,−†′𝐵 ), an algebra homomorphism is a morphism 𝜙 : E(𝐵, 𝐵′)
that preserves the extension operation 𝜙 ( 𝑗†𝐵 ) = 𝜙 ( 𝑗)†′𝐵 .

Definition 6.6. Given a relative monad𝑀 , an Algebra kind is a kind ALG ∈ K with a universal

ALG→ Alg(𝑀).

Such an algebra kind can be implemented using iterated sigmas and extensional equality, but we

will simply abstract over it directly.

This defines a category Alg(𝑀), which we can then use to construct a new Zydeco model, the

algebra model, for which the main functors are described in Figure 23.

Construction 6.1 (Fundamental Theorem of CBPV Relative Monads). Let𝑀 be a CBPV relative
monad.

We construct a new CBPV model, also called Alg(𝑀), as follows:
(1) V,K are given by the originalV,K
(2) E is given by Alg(𝑀)
(3) C is given by C ◦𝑈 where𝑈 : Alg(𝑀) → E is the forgetful functor.

Alg(𝑀) always has all return objects, even if the original model does not, given by the free algebra
𝑀𝐴 = (𝑀𝐴,−†).

For the remaining connectives, Alg(𝑀) has...
(1) A kind of value objects, function kinds and sigma kinds when the original model does.
(2) A kind of computation objects when the original type has a kind of algebras.
(3) Thunk objects when the original model does.
(4) The Zydeco sums whenever the original model does (trivially).
(5) The Zydeco product types whenever the original model does (see Lemma 6.2 below).

In particular, if the original model is a Zydeco model with an algebra kind, then Alg(𝑀) is a Zydeco
model.

Since all the Zydeco product types are given by a categorical product, this property follows from

the following simple calculation for the forgetful functor, generalizing a well known property for

ordinary monads[Arkor and McDermott 2023b]:

Lemma 6.2. The forgetful functor𝑈 : Alg(𝑀) → E creates limits.

Proof. Let 𝐷 : 𝐼 → Alg(𝑀) be a diagram and let 𝐿, (𝜋𝑖 )𝑖∈𝐼 be a limit cone for 𝑈 ◦ 𝐷 . Then we

construct an algebra structure on 𝐿 by

𝑗†𝐿 = ((𝐽 𝐴 𝜋𝑖 𝑗)†𝐷𝑖 )𝑖∈𝐼

That is, the unique morphism such that 𝜋𝑖 ◦ ((𝐽 𝐴 𝜋𝑖 𝑗)†𝐷𝑖 )𝑖∈𝐼 = (𝐽 𝐴 𝜋𝑖 𝑗)†𝐷𝑖 . The uniqueness

condition of a limit is clearly satisfied because algebras form a subcategory. For the existence

condition, let 𝜙𝑖 : Alg(𝑀) ((𝐵,−†𝐵 ), 𝐷𝑖 ) be a family of algebra homomorphisms. Then we need to

show that (𝜙𝑖 )𝑖∈𝐼 is a homomorphism, which follows by a simple calculation

(𝜙𝑖 )𝑖∈𝐼 ◦ 𝑗†𝐵 = (𝜙𝑖 ◦ 𝑗†𝐵 )𝑖∈𝐼 = ( 𝑗†𝐷𝑖 )𝑖∈𝐼 = 𝑗†𝐿

□
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Fig. 23. Relating the Algebra Model to the original Model

6.3 Why CBPV Matters
We note that the CBPV separation into value and computation types, where value types have

only “left adjoint” connectives besides Thunk and computation type connectives only have “right

adjoint” connectives besides Ret , is essential for the fundamental theorem to hold. To demonstrate

we consider two alternative systems where the corresponding fundamental theorem fails in that

it is not a “self”-transformation or requires much more stringent requirements on the monad in

question.

First, consider the situation in Moggi’s original work: a strong monad on a Cartesian closed

category. This is a “pure” 𝜆 calculus with a monad on it. We can take the category of algebras of

this monad, but this will generally give back a Cartesian closed category. In general the category

of algebras will model only the CBPV connectives, to get back a Cartesian category we would

need the monad to strongly preserve Cartesian products[Kammar and Plotkin 2012]. If it only laxly

preserves Cartesian products we get back a model of linear-non-linear logic[Benton and Wadler

1996].

Secondly, consider the enriched effect calculus, which adds several connectives to CBPV which

break the “polarity” restriction, such as adding a coproduct of computation types ⊕ and a “tensor”

𝐴 ⊘ 𝐵 which is a dual of 𝐴→ 𝐵. In general given a CBPV relative monad, the category of algebras

will not have coproducts even if the original E does, see Adamek and Koubek [1980] for conditions

under which they exist.

7 FROM RELATIVE MONADS TO MONAD TRANSFORMERS
Programming explicitly with effects leads to issues of interoperability: can we call a subprocedure

that uses monad 𝑀 in a procedure using monad 𝑀 ′? As is well known, there is no arbitrary

operation to take the “union” of effects by combining arbitrary monads together, such an operation

is only supported by adding a restriction that the monad be given by an algebraic theory, which

forms the basis for programming with “algebraic effects” [Plotkin and Power 2001].

One common way to modularly combine monads together without using algebraic theories is

to use monad transformers. A monad transformer 𝑇 is a sort of “higher-order” monad, it takes a

monad 𝑀 as input and outputs a monad 𝑇 (𝑀) with a monad homomorphism 𝑀 → 𝑇 (𝑀). We

think of 𝑇 as “adding” some effects to an arbitrary given other notion of effect provided by 𝑀 .

The homomorphism 𝑀 → 𝑇 (𝑀) says that immediate subprocedures that use 𝑀 can be used in

a procedure that uses all of the effects of 𝑇 (𝑀). If we think of relative monads operationally as

providing some stack-based continuations, then monad transformers are a higher-order type of

continuation constructors. If we take𝑀 to be the identity monad, then 𝑇 (Id) is an ordinary monad

and we can think of the monad transformer 𝑇 as a compositional version of the monad 𝑇 (Id).

Definition 7.1. A monad homomorphism ℎ from (𝑀,𝜂,−†) to (𝑀 ′, 𝜂′,−†′ ) consists of a family

of morphisms ℎ𝐴 : E(𝑀𝐴,𝑀 ′𝐴) that preserves the monad structure in that ℎ𝐴 (𝜂𝐴) = 𝜂′
𝐴
and

ℎ𝐴 ( 𝑗†) = 𝑗†
′
.
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A monad transformer is a function 𝑇 : RMonad→ RMonad with a function taking any monad

𝑀 and constructing a monad homomorphism lift : 𝑀 → 𝑇 (𝑀).

It is borne out by Haskell programming practice that seemingly all monads can be extended to

a monad transformer, but the process of doing so is not automatic and involves some intuition

based on experience. For instance, the exception monad Exn𝐸 𝐴 = 𝐸 +𝐴 in a pure language can

be generalized to the exception monad transformer ExnT𝑀 𝐸𝐴 = 𝑀 (𝐸 +𝐴), but this takes some

insight: the quite similar definition of ExnT𝑀 𝐸𝐴 = 𝐸 + 𝑀 (𝐴), for instance, is incorrect. Some

general techniques for deriving monad transformers have been identified [Jaskelioff 2009] but

none are fully general. The situation is improved in the setting of CBPV: all relative monads in

CBPV can be extended to monad transformers. For instance, in the case of the relative exception

monad Exn𝐸 𝐴 = 𝐹 (𝐸 +𝐴), we can derive the exception monad transformer simply by replacing all

uses of 𝐹 with the monad parameter ExnT𝑀 𝐸𝐴 = 𝑀 (𝐸 +𝐴). Intuitively this is because all CBPV

constructions work with an arbitrary notion of ambient effect, which can be instantiated even

with user-provided effects. The proof formalizes this intuition using the algebra translation from

Section 6 to reinterpret a monad in the model of algebras of the “generic” monad. Externalizing the

construction constructs a monad transformer.

This property is not just convenient for CBPV programming, but can be used to derive monads

in “pure” like Haskell based on 𝜆 calculus since pure languages can be seen as a degenerate model

of CBPV with no effects. Using this inclusion, we get that all relative monad transformers in CBPV

induce ordinary monad transformers in the language of pure 𝜆 calculus. This provides a systematic,

if not automatic, method for deriving a monad transformer in a pure language from a monad: first

find a relative monad in CBPV that coincides with the original monad in the pure model, and then

automatically derive the definition of the monad transformer. This at least provides some guidance

to the programmer, for instance in the exception monad case above, the incorrect definition of

𝐸 +𝑀 (𝐴) doesn’t pass kind-checking in CBPV!

If the CBPV model has return objects, then Ret is a relative monad and further, it is the initial
relative monad, for any monad𝑀 there is a unique relative monad homomorphism from Ret to𝑀

using the algebra structure all computation types carry. This leads to the following observation,

which generalizes a similar property for ordinary monads:

Construction 7.1. Given𝑀 a relative monad in Alg(𝑀𝑏), we can construct a relative monad𝑈𝑀 in
the original model with a monad homomorphism𝑀𝑏 → 𝑈𝑀 .

Proof. As suggested, 𝑈𝑀 is constructed by taking the monad structure of 𝑀 and simply for-

getting the algebra/homomorphism properties. The homomorphism𝑀𝑏 → 𝑈𝑀 is given by simi-

larly forgetting the additional algebra homomorphism conditions in the monad homomorphism

Ret → 𝑀 . □

With this, we can give our monad transformer construction:

Construction 7.2. Any monad𝑀 definable in an arbitrary Zydeco model extends to a relative monad
transformer 𝑇 (Ret ) � 𝑀 .

Proof. For an input monad𝑀𝑏 , we construct the algebra model Alg(𝑀𝑏). We then interpret𝑀

in Alg(𝑀𝑏) and apply Construction 7.1 to get a monad we call 𝑇 (𝑀𝑏) which comes with a monad

homomorphism𝑀𝑏 → 𝑇 (𝑀𝑏). If the input monad𝑀𝑏 is Ret , then the algebra model is equivalent

to the original, and so interpreting𝑀 in Alg(Ret ) results in an equivalent monad𝑇 (Ret ) � 𝑀 . □

Finally, we can apply this to a “pure” 𝐹𝜔 style language based on the following:
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Definition 7.2. An depolarized CBPV model is a polymorphic concrete CBPV model where E = V
and C : V → 𝑆𝑒𝑡 is the inclusion. A concrete 𝐹𝜔 model is a Zydeco model that is a pure CBPV

model.

Observe that in a depolarized model 𝐽 is just the Hom profunctor of V . Additionally, a rela-

tive monad in a depolarized model is just an ordinary (strong) monad, and similarly a relative

monad transformer is just an monad transformer. This makes the following simply an instance of

Construction 7.2

Corollary 7.1. Any monad𝑀 definable in an arbitrary Zydeco model defines an ordinary monad
transformer in an 𝐹𝜔 model.

8 DISCUSSION AND FUTUREWORK
8.1 Implementing the Algebra Translation
Currently there is a slight mismatch between the fundamental theorem we proved in Section 6

and the Zydeco language: Zydeco does not currently support Σ kinds and so it is not possible to

directly encode the algebra translation homomorphically in the way we described at least when

quantification over computation types is used. In Zydeco we can define e.g., a relative continuation

monad parameterized by 𝑅 as Cont𝐴𝑅 = 𝑈 (𝐴→ 𝑅) → 𝑅. The algebra translation would translate

this definition to something equivalent to Cont (𝐴 : 𝑉𝑇𝑦) (𝑅 : 𝑆𝑖𝑔𝑚𝑎𝑅0.(𝑅𝐴𝑙𝑔 : 𝐴𝑙𝑔𝑒𝑏𝑟𝑎𝑅0𝑀) =
𝑈 (𝐴→ 𝑅.1) → 𝑅.1, where 𝑀 is the monad parameterizing the translation, but here we see that

while the original definition is valid using only quantification over types, the definition produced

by the algebra translation quantifies over the implementation of an algebra, i.e., a type dependent

on a value. In practice, we carry out this process by hand, for example when deriving the monad

transformer from a given monad. To circumvent the need for sigma kinds we can typically move the

algebra parameter from the type definition to all of the uses, i.e., in the above definition we only use

𝑅.1 in the definition of the carrier. This technique can likely be adapted to a systematic translation

that stays in the system 𝐹𝜔 fragment, but using Σ kinds would lead to a simpler translation at

higher kind since using the Σ-kind based translation, all kind constructors besides CType can be

homomorphically translated.

An alternative to a meta-theoretic algebra translation would be to use Haskell-style typeclasses

for relative monad and algebra, where do notation would be overloaded to use the algebra structure

of the type of the expression. To get the full convenience of this translation would require a mix of

features currently supported by Haskell (unification-based type inference, typeclasses, deriving)

but which would require considerable engineering effort to be added to Zydeco. It is also not clear

how this encoding would work at higher kinds.

Another avenue for future work would be to extend Zydeco to support dependent CBPV, and

this also causes issues for an automated algebra translation. The reason is that in order to support

decidable type checkingwewould support an intensional type theory, but constructivemathematical

proofs like the one we gave are only directly translatable to extensional type theory. Tackling such

issues would require adapting techniques used in e.g., the weaning translation for 𝜕-CBPV [Pédrot

and Tabareau 2017, 2019]. In particular, the weaning translation is an adaptation of the algebra

semantics of CBPV for an ordinary monad to the setting of intensional type theory, so our relative

monad algebra semantics could possibly be combined to generalize this to a “relative weaning

translation”.

8.2 Applications to Verified Compilation
In this work, for concreteness we have focused on a stack-based calculus, but much of our interest

in this topic is on potential applications to verified compilation, where low-level representation
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decisions such as the representation of continuations and stack frames must be formalized and

code verified to use this representation. We argue that there is not quite as large a gap between the

CBPV-based calculus we have used here and low-level compiler IRs. Firstly, the CBPV calculus is

closely related to common functional compiler IRs such as ANF and CPS [Appel 1992; Flanagan et al.

1993], and additionally to SSA form, the most commonly used compiler IR in industry today. The

most thorough result about this relationship proves an isomorphism between focused CBPV terms

and SSA control-flow graphs [Garbuzov et al. 2018]. However these intermediate representations

typically abstract from explicit stack manipulation, and so CBPV is somewhat more general in its

ability to describe stack structure in its type system. In this regard it is more similar to explicit

stack-manipulating IRs such as the Stack-based Typed Assembly Language [Morrisett et al. 2003].

Stack-based TAL includes, like CBPV, a second “kind” of type, called stack types, and indeed

their work includes examples of implementing exceptions using stack types that inspired some of

our examples in Zydeco. For instance, they give encodings of double-barreled continuations that,

other than specifying additional details such as the representation of closures and precisely which

registers are used correspond directly to our encoding in CBPV. A major difference in our work is

our use of coinductive computation types to encode stack-walking, which would correspond dually

to a kind of inductive stack type in stack-based TAL.

8.3 Relative Comonads
An obvious direction for future work would be to consider relative comonads in CBPV, which would

dually be type constructors 𝐶𝑇𝑦𝑝𝑒 → 𝑉𝑇𝑦𝑝𝑒 with extra structure, with 𝑈 being the prototypical

example, just as 𝐹 is the prototypical relative monad. In the same way that relative monads abstract

the structure of continuations implemented on the stack to allow for additional “effects”, relative

comonads would abstract the structure of closures to allow for additional “coeffects” such as

accessing metadata for the closure or availability of a destructor for an object. It is however not

clear what the analog of the fundamental theorem of relative monads for comonads would be

as categories of coalgebras would not necessarily have Cartesian products: this might require

generalizing the value of types of CBPV to be linear types or adding further restrictions to the

notion of comonad considered.
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Σ ⊢ 𝐺 ⊣ Δ 𝐺 extracts Δ under type declaration context Σ

data 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | 𝐶𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ )∗ end ∈ Σ Δ = {𝑋 ↦→ (𝐾𝑘 )∗ → VType}
Σ ⊢ data 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | 𝐶𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ )∗ end ⊣ Δ

[DataExtraction]

codata 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | .𝐷𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ : 𝐵𝑖 )∗ end ∈ Σ
Δ = {𝑋 ↦→ (𝐾𝑘 )∗ → CType}

Σ ⊢ codata 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | .𝐷𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ : 𝐵𝑖 )∗ end ⊣ Δ
[CoDataExtraction]

Fig. 24. Rules on Declaration Extraction

Σ ⊢ 𝐺 valid 𝐺 is valid under declaration context Σ

ΔΣ, (𝑋𝑘 : 𝐾𝑘 )∗ ⊢ 𝑇𝑖 𝑗 : VType
Σ ⊢ data 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | 𝐶𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ )∗ end valid

[DataValid]

ΔΣ, (𝑋𝑘 : 𝐾𝑘 )∗ ⊢ 𝑇𝑖 𝑗 : VType ΔΣ, (𝑋𝑘 : 𝐾𝑘 )∗ ⊢ 𝑇𝑖 : CType
Σ ⊢ codata 𝑋 (𝑋𝑘 : 𝐾𝑘 )∗ where ( | .𝐷𝑖 (𝑋𝑖 𝑗 : 𝐾𝑖 𝑗 )∗ (𝐴𝑖 𝑗 ′ )∗ : 𝐵𝑖 )∗ end valid

[CoDataValid]

Fig. 25. Rules on Declaration Validation

A TYPE DECLARATION RULES OF ZYDECO
The declaration extraction pass extracts the kinding information of all the new types defined in the

declaration as shown in Figure 24.

B MONAD LAWS
We verify verify the monad laws on the exception monads satisfying the canonicity condition. The

right unital law is in fact satisfied without the extra conditions;

! bind { ! return 𝑎 } 𝑓
≡ ! return 𝑎 .kont 𝑓

≡ ! 𝑓 𝑎
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And the left unital law can be verified if we apply the canonicity condition on !𝑚.

! bind𝑚 return

≡ !𝑚 .kont return

≡ do 𝑥 ← !𝑚 .done ;

match 𝑥

| + Left(𝑒) → ! fail 𝑒

| + Right(𝑎) → ! return 𝑎

𝑒𝑛𝑑

.kont return

≡ do 𝑥 ← !𝑚 .done ;

match 𝑥

| + Left(𝑒) → ! fail 𝑒 .kont return

| + Right(𝑎) → ! return 𝑎 .kont return

𝑒𝑛𝑑

≡ do 𝑥 ← !𝑚 .done ;

match 𝑥

| + Left(𝑒) → ! fail 𝑒

| + Right(𝑎) → ! return 𝑎

𝑒𝑛𝑑

≡ !𝑚

As for the associativity law, we observe

! bind { ! bind𝑚 𝑓 } 𝑔 ≡ !𝑚 .kont 𝑓 .kont 𝑔

! bind𝑚 { fn 𝑥 → ! bind { ! 𝑓 𝑥 } 𝑔 } ≡ !𝑚 .kont { fn 𝑥 → ! 𝑓 𝑥 .kont 𝑔 }

By applying the canonicity condition on !𝑚 and using the same reasoning as in the left unital law,

we have for the left side

!𝑚 .kont 𝑓 .kont 𝑔

≡ do 𝑥 ← !𝑚 .done ;

match 𝑥

| + Left(𝑒) → ! fail 𝑒

| + Right(𝑎) → ! return 𝑎 .kont 𝑓 .kont 𝑔

𝑒𝑛𝑑

≡ do 𝑥 ← !𝑚 .done ;

match 𝑥

| + Left(𝑒) → ! fail 𝑒

| + Right(𝑎) → ! 𝑓 𝑎 .kont 𝑔

𝑒𝑛𝑑
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and the right side

!𝑚 .kont { fn 𝑥 → ! 𝑓 𝑥 .kont 𝑔 }
≡ do 𝑥 ← !𝑚 .done ;

match 𝑥

| + Left(𝑒) → ! fail 𝑒

| + Right(𝑎) → ! return 𝑎 .kont { fn 𝑥 → ! 𝑓 𝑥 .kont 𝑔 }
𝑒𝑛𝑑

≡ do 𝑥 ← !𝑚 .done ;

match 𝑥

| + Left(𝑒) → ! fail 𝑒

| + Right(𝑎) → ! 𝑓 𝑎 .kont 𝑔

𝑒𝑛𝑑

Finally, the linear bind law trivially holds because𝑀 is syntactically restricted to be used for only

once in the computation. The only surrounding computation of𝑀 is a do-binding, which preserves

linearity. Therefore, we conclude that all four monad laws are satisfied with the canonicity property.
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