
CIS 341 Final Examination
4 May 2017

SOLUTIONS

1

1. Typechecking (14 points total)

In this problem we will consider the typechecking rules for a simple OCaml-like programming
language that has built-in support for sum types. To aid your intuition, we could implement sum
types in OCaml using the following type declaration:

type (’a, ’b) sum = Left of ’a | Right of ’b

Our new language will use the notation τ1+τ2 as syntax for a built-in type that acts like (τ1,τ2) sum

does in OCaml. We create values of type τ1 + τ2 using the Left and Right constructors, and we
inspect such values using match, whose semantics is the same as in OCaml.

The grammar and (most of the) typechecking rules for this language is given in Appendix A.

a. (4 points) Which of the following terms are well-typed according to the rules shown in the
Appendix? (Mark all correct answers.)

2 let x = 3 in (let x = 4 in x)
� let x = (let x = 4 in x) in x
2 let x = (let y = 4 in x) in y
� let x = 3 in Left x

b. (4 points) Recall that in our course compiler, we implemented the typechecker by viewing
the judgment Γ ` e : τ as an OCaml function that takes in (OCaml representations of) Γ and
e as inputs and produces (the OCaml representation of) τ as the output. That same strategy
can no longer be used for this toy language, even with just the rules shown in the appendix.
Briefly explain why not.
Answer: The rules for left and right would have to guess an appropriate other half of the sum
type, but that isn’t uniquely determined, so there is no function. For example, there is not a
unique type that can be assigned to the term Left 3.

c. (6 points) Complete the blanks in the rule below to create a sound (and correct) inference
rule for the match expression. Assume that the operational behavior of match is the same as
in OCaml. Some of the blanks might need to be left empty. It is OK if variables bound in the
match branches shadow occurrences from an outer scope.

Γ ` e : τ1 + τ2 x1 : τ1,Γ ` e1 : τ x2 : τ2,Γ ` e2 : τ

Γ ` match e with Left x1 → e1 | Right x2 → e2 : τ
[match]

2

2. Subtyping (15 points total)

For the next few problems, suppose that we are working with a programming language with sub-
typing and that there are types A, B, and C such that B <: A and C <: A. Further suppose that for
all types t, t <: Object.

Mark all correct answers. There may be zero, or more than one.

a. Which of the following are sound subtypes of the function type A→ B?

2 Object→ Object

2 A→ C

� Object→ B

2 C→ A

b. Which of the following are sound supertypes of the mutable array type B array?

2 A array

� B array

2 C array

� Object

c. Suppose the programming language has conditional expressions and first-class functions (as
in OCaml) in addition to subtyping. What is the most precise type that can be given to the
following expression, assuming that b is a boolean and new B() creates a fresh object of
type B?
if b then (fun (a:A) -> new B()) else (fun (c:C) -> c)

2 A→ Object

2 A→ A

� C→ A

2 C→ Object

d. Suppose that we create a language (like Swift) that makes a type distinction between types
A, whose values are definitely not null references to A objects, and possibly null types A?,
whose values are either references to A objects or null. Which direction should the sound
subtyping relation go?

� A <: A?

2 A? <: A

2 there can be no sound subtyping relation between A and A?

3

3. Object Compilation (12 points)

Appendix B contains the LLVM code for the type definitions generated by compiling the source
program written in a hypothetical object-oriented language that structures the class hierarchy using
single inheritance.

a. Fill in each blank to correctly describe the source program that compiles to the given LLVM
code.

• A’s parent in the class hierarchy is Object

• B’s parent in the class hierarchy is Object

• C’s parent in the class hierarchy is A

b. Check one box in each case below to make the sentence true of the source program that
compiles to the given LLVM code.

• Class B
� introduces 2 overrides
2 inherits 2 doesn′t have

a method called print.

• Class B
� introduces 2 overrides
2 inherits 2 doesn′t have

a method called foo.

• Class B
2 introduces 2 overrides
2 inherits � doesn′t have

a method called bar.

• Class C
2 introduces 2 overrides
� inherits 2 doesn′t have

a method called print.

• Class C
2 introduces � overrides
2 inherits 2 doesn′t have

a method called foo.

• Class C
� introduces 2 overrides
2 inherits 2 doesn′t have

a method called bar.

c. How many fields does an object of (source) type C have? 2

d. Let c be an object of (source) type C and consider the legal method call c.bar(c). True or
False: compiling this call requires a bitcast to implement at the LLVM level.

� True
2 False

4

4. Optimization (12 points)

Consider the following function written in Oat notation.

int foo(int n, int[] a, int[] b) {

var sum = 0;

for(var i = 0; i < n; i = i + 1;) {

a[i] = a[i] + b[2];

sum = sum + a[i];

}

return sum;

}

Now consider this incorrectly “optimized” version, which tries to hoist the expression b[2] out-
side of the loop:

int foo_opt(int n, int[] a, int[] b) {

var sum = 0;

var tmp = b[2];

for(var i = 0; i < n; i = i + 1;) {

a[i] = a[i] + tmp;

sum = sum + a[i];

}

return sum;

}

There are at least two different reasons why the proposed “optimization” is incorrect, one having
to do with aliasing, and one that does not involve aliasing.

a. (2 points) First complete the code below to give a set of inputs that use aliasing to demonstrate
that the calls foo(n,a,b) and foo_opt(n,a,b) have different behaviors:

var a = new int[] {0, 1, 2, 3};

var n = 4;

var b = a;

b. (4 points) Now complete the code snippet to give a set of inputs that does not use aliasing, yet
still demonstrates that the calls foo(n,a,b) and foo_opt(n,a,b) have different behaviors:

var a = new int[] {0, 1, 2, 3};

var n = 0;

var b = new int[] {};

5

c. (True or False) Inlining function definitions always improves running time performance.

2 True � False

d. (True or False) Removing dead code cannot impact the running time of a program.

2 True � False

e. We have seen that a source C (or Oat) variable declaration like the one shown on the left
below will typically first be translated to the LLVM code shown on the right, which uses
alloca:

int x = 0; %_var_x = alloca i64

store i64 0, i64* %_var_x

/* here */

Which of the following LLVM instructions, if it appeared at the point marked /* here */

in the LLVM code, would prevent alloca promotion of %_var_x (i.e. replacing its uses with
uids; also known as SROA optimization)? There may be zero or more than one answer.

2 %y = load i64* %_var_x

� store i64* %_var_x, i64** %_var_y

� %y = call i64* foo(i64* %_var_x)

2 store i64 %_var_y, i64* %_var_x

6

5. Data-flow Analysis (34 points)

Warning: read all of this problem before tackling the earlier parts—the later parts give you clues
to the earlier ones. There are no questions to answer on this page!

In this problem, we will consider a dataflow analysis for anticipated expressions, which finds use-
ful facts for performing an optimization called partial redundancy elimination. For the purposes
of this problem, we will consider a stripped-down version of the LLVM IR that contains only the
integer types i1 and i64, pointer types T*, and the following instructions / terminators and phi
functions:

Instructions: %x = add i64 op1, op2

%x = icmp eq i64 op1, op2

%x = load T* op

%x = alloca T

%x = store T op1, T* op2 (%x is a dummy id)
Terminators: ret void

br label %lbl

br i1 op1, label %lbl1, label %lbl2

Phi functions: %x = phi T [op1, %lbl1] [op2, %lbl2]

We structure these into a control-flow graph as usual.

The expression of an instruction of the form %x = e is just e, though for the purposes of this
analysis we treat alloca and store as defining no expressions, since their behavior operates by
side effect (see part (c)).

Definition 0.1 (Anticipated Expression) We say that an expression e is anticipated at a program
point p if all paths leading from p eventually compute e and e has the same value at those points
as it does at p.

Intuitively, this analysis is used to find expressions that can potentially be moved earlier in the
code. If e is computed multiple times, moving its definition earlier can allow the resulting value
to be shared among those redundant occurrences—see parts (d) and (e) of this problem for an
example.

Computing anticipated expressions is a backward dataflow analysis. Recall the generic frame-
works for backward iterative dataflow analysis that we discussed in class. Here, n ranges over the
nodes of the control-flow graph, succ[n] is the set of successor nodes, Fn is the flow function for
the node n, and u is the meet combining operator.

for all nodes n: in[n] = >, out[n] = >;
repeat until no change {

for all nodes n:

out[n] :=
d
n’ ∈ succ[n] in[n’];

in[n] := Fn(out[n]);

}

7

Recall that the flow functions Fn and the u operator work over elements of a lattice L. The
anticipated expressions analysis will compute, for each program point p of the control-flow graph,
a set of expressions that are anticipated at that point, so each ` ∈ L is a set of expressions.

a. (3 points) What should the meet operation u be for this analysis and (briefly) why?
Answer:Intersection: because an expression is anticipated only if it computed on all paths
from p.

b. (3 points) Why is this dataflow lattice of finite height?
Answer:Each set consists of a subset of expressions found in the CFG, which is finite, so the
height is at most E where E is the number of distinct expressions appearing in the graph.

8

c. We can now define the flow functions for each program instruction n by defining:

Fn(`) = (` ∪ {e})− kill(n) where n is of the form %x = e

F(ret void)(`) = ∅

To define kill(n), the set of expressions killed by the instruction n, it is useful to have a
helper function that computes the set of all expressions that use the identifier %x:

usesOf(%x) = {e | %x is an operand of e}

Once usesOf is defined, we specify kill as follows:
n kill(n) =
%x = alloca T usesOf(%x) ∪ {alloca T}

%x = store T op1, T* op2 usesOf(%x) ∪
(⋃

%y∈mayAlias(op2) usesOf(%y)
)

%x = e usesOf(%x)

i. (3 points) Which of the following properties do the flow functions satisfy?
(Mark all that apply.)
� Monotonicity: `1 v `2 ⇒ Fn(`1) v Fn(`2)

� Distributivity: Fn(`1 u `2) = Fn(`1) u Fn(`2)

� Consistency: Fn(`) v >

ii. (4 points) The definition of the set kill(n) depends on an alias analysis. One conser-
vative, but sound alias analysis would be to say that any uid of pointer type may alias
any other such uid. Briefly describe one way to improve the alias information for this
LLVM subset.
Answer: Use the fact that two distinct occurrences of alloca can never alias.

9

d. (9 points) Consider applying the anticipated expressions analysis to the control-flow graph
below.

void foo(i1 %c, i64 %a, i64 %b) {

entry:

%t1 = alloca i64

%d1 = store i64 0, i64* %t1

br i1 %c, label %then, label %else

then:

%x1 = add i64 %a, %b

%d2 = store i64 %x1, %t1

br label %merge

else:

br label %merge

merge:

%x2 = add i64 %a, %b

%x3 = load i64* %t1

%x4 = add i64 %x2, %x3

%d3 = store i64 %x4, %t1

ret void

}

i. What is the lattice element computed by the dataflow analysis for in[else], i.e. the
lattice element at the incoming edge of the else block? (select one)
2 ∅
2 { add i64 %a, %b }
� { add i64 %a, %b, load i64* %t1 }
2 { add i64 %a, %b, load i64* %t1, add i64 %x2, %x3 }

ii. What is the lattice element computed by the dataflow analysis for in[then], i.e. the
lattice element at the incoming edge of the then block? (select one)
2 ∅
� { add i64 %a, %b }
2 { add i64 %a, %b, load i64* %t1 }
2 { add i64 %a, %b, load i64* %t1, add i64 %x2, %x3 }

iii. What is the lattice element computed by the dataflow analysis for in[entry], i.e. the
lattice element at the incoming edge of the entry block? (select one)
2 ∅
� { add i64 %a, %b }
2 { add i64 %a, %b, load i64* %t1 }
2 { add i64 %a, %b, load i64* %t1, alloca i64 }

10

e. An expression e is redundant if it is computed multiple times along one path of program
execution (and each time it is computed it yields the same value). A redundant expression
e can be moved anywhere it is anticipated, which may allow rewriting the program to elim-
inate the redundant computations. For example, in the program from part (d) the expression
add i64 %a, %b is redundantly computed when the “then” branch is taken.

i. (4 points) Redundant expressions are typically moved as late as possible while still
reducing (or keeping the same) the number of times the expression is computed along
each path. Briefly explain why they are moved “as late as possible” and not “as early as
possible”. (Hint: think about the impact on code generation.)
Answer: Moving the expression as early as possible increases the live range of its
operands and thus causes more interference for subsequent register allocation.

ii. (8 points) Fill in the blanks below to eliminate the redundant expression add i64 %a, %b

from foo. Follow the “as late as possible” policy described above . You may not need to
add code at all of the blanks.

void foo(i1 %c, i64 %a, i64 %b) {

entry:

%t1 = alloca i64

%d1 = store i64 0, i64* %t1

(blank)

br i1 %c, label %then, label %else

then:

%x1 = add i64 %a, %b

%d2 = store i64 %x1, %t1

br label %merge

else:

%x0 = add i64 %a, %b

br label %merge

merge:

%x2 = phi i64 [%x1, %then] [%x0, %else]

%x3 = load i64* %t1

%x4 = add i64 %x2, %x3

%d3 = store i64 %x4, %t1

ret void

}

11

6. Control-flow Analysis (21 points)

Consider the following control-flow graph G with nodes labeled A through G and edges labeled 1
through 11. Node A is the entry point.

��

A

1

~~

2

��

B

3
��

6

��

C

4
��

D

7
��

11

JJ

E

5

TT

9

��

F

8

TT

10

G

a. (6 points) Draw the dominance tree for the control-flow graph G, making sure to label nodes
appropriately (there is no need to label the edges).

��

A

�� �� ��

B

~~ ��

G C

��

D F E

12

b. (6 points) For each back edge e of G, identify the set of nodes appearing e’s natural loop.
Each answer should be of the form “e, {nodes}” where e is a back edge and nodes is the set
of nodes that make up the loop.
5, {C, E}
11, {A, B, D, F}

c. (3 points) Which nodes are in the dominance frontier of the node D?
{A,F}

d. (3 points) Which nodes are in the dominance frontier of the node F?
{D, G}

e. (3 points) The following control-flow graph is irreducible: it contains a cycle but has no back
edges and hence no natural loops.

��

A

~~

B

))
C

~~

ii

D

Can such a graph arise at the LL level when compiling Oat programs as found in HW5? If
“yes”, give an example, if “no” briefly explain why not.
Answer: No: Oat cannot generate this cfg because its control-flow constructs are well-nested.
It does not have goto or any other means of transferring control from one branch of a condi-
tional to another.

13

7. Register Allocation (10 points)

a. (5 points) Consider the following straight-line LLVM code.

%c = call i64 init()

%a = add i64 %c, %c

%b = add i64 %c, %c

%e = add i64 %a, %b

%d = add i64 %c, %e

ret i64 %d

Label the vertices of the following interference graph (where the solid lines denote interfer-
ence edges) so that it corresponds to the code above. Each label %a–%e should be used once.
(There may be more than one correct solution.)

%a

%b %c

%d %e

b. (2 points) What is the minimal number of colors needed to color the graph?
3

c. (3 points) Briefly explain the purpose of coalescing nodes of the interference graph.
Answer: Coalescing forces two nodes to be given the same color (and hence the same reg-
ister). It is useful when one temporary is moved into another because the resulting move
instruction can then be eliminated.

14

CIS341 Final Exam 2017 Appendices
(Do not write answers in the appendices. They will not be graded)

15

APPENDIX A: Typechecking Sum Types
Grammar for a simple expression-based language with sum types:

τ ::= Types
| int

| τ1 + τ2

e ::= Expressions
| x variables
| n integer constants
| let x = e1 in e2 local lets
| Left e sum constructors
| Right e
| match e with Left x1 → e1 | Right x2 → e2 case analysis
| (e)

Γ ::= Typechecking Contexts
| ·
| x :τ,Γ

Typechecking expressions is defined, in part, by the following inference rules. Recall that the nota-
tion x : τ ∈ Γ means that x occurs in the context Γ at type τ and x /∈ Γ means that x is not bound in
Γ.

Γ ` e : τ

x :τ ∈ Γ
Γ ` x : τ

[var]
Γ ` n : int

[int]

x 6∈ Γ Γ ` e1 : τ1 x :τ1,Γ ` e2 : τ2
Γ ` let x = e1 in e2 : τ2

[let]

Γ ` e : τ1
Γ ` Left e : τ1 + τ2

[left]
Γ ` e : τ2

Γ ` Right e : τ1 + τ2
[right]

16

APPENDIX B: Example LLVM Code for an OO Program
The following LLVM code was obtained by compiling a source program that uses single-inheritance (as
in Java, but without interfaces). We have omitted the definitions of the method bodies (i.e., we omit the
definitions of @_foo_A, @_print_A, etc.).

%Object = type { %_class_Object* }

%_class_Object = type { }

%A = type { %_class_A*, i64 }

%_class_A = type { %_class_Object*, void (%A*)*, i64 (%A*, %C*)* }

%B = type { %_class_B*, i64, i64 }

%_class_B = type { %_class_Object*, void (%B*)*, i64 (%B*, %B*)* }

%C = type { %_class_C*, i64, i64 }

%_class_C = type { %_class_A*, void (%A*)*, i64 (%C*, %C*)*, %A* (%C*, %A*)* }

@_vtbl_Object = global %_class_Object { }

@_vtbl_A = global %_class_A { %_class_Object* @_vtbl_Object,

void (%A*)* @_print_A,

i64 (%A*, %C*)* @_foo_A

}

@_vtbl_B = global %_class_B { %_class_Object* @_vtbl_Object,

void (%B*)* @_print_B,

i64 (%B*, %B*)* @_foo_B

}

@_vtbl_C = global %_class_C { %_class_A* @_vtbl_A,

void (%A*)* @_print_A,

i64 (%C*, %C*)* @_foo_C

%A* (%C*, %A*)* @_bar_C

}

17

