Problem Set 3

January 27, 2022

Problem 1 The Product of Graphs

When working in a new mathematical domain, we can use category theoretic concepts to help us understand common constructions.

For this problem, a graph $G = (G_v, G_e)$ consists of a set of vertices G_v and an incidence relation $G_e \subseteq G_v^2$ telling us when there is a (directed) edge between two vertices.

A graph homomorphism $\phi : G \to H$ is a function on the vertices $\phi : G_v \to H_v$ that preserves the incidence relation: if $(v, v') \in G_e$ then $(\phi(v), \phi(v')) \in H_e$.

There are many constructions that are called the "product" of graphs, but up to isomorphism only one that satisfies the universal mapping property of a product.

Consider the following two constructions.

For any two graphs G, H define the box product $G \square H$ to be the following graph:

- 1. The set of vertices is given by the cartesian product $(G \square H)_v = G_v \times H_v$.
- 2. There is an edge $((g, h), (g', h')) \in (G \square H)_e$ if and only if either of the following holds
 - (a) $(g, g') \in G_e$ and h = h'.
 - (b) g = g' and $(h, h') \in H_e$.

For any two graphs G, H define the *tensor product* $G \otimes H$ to be the following graph:

- 1. The set of vertices is given by the cartesian product $(G \otimes H)_v = G_v \times H_v$.
- 2. There is an edge $((g,h), (g',h')) \in (G \otimes H)_e$ if and only if $(g,g') \in G_e$ and $(h,h') \in H_e$.

Both of these are useful ways to combine two graphs together, but only one of them is the true categorical product.

- 1. Show that one of these two products (\Box, \otimes) gives the categorical product of graphs, i.e., always satisfies the universal mapping property of a product.
- 2. For the other, briefly explain why it fails to be a categorical product.

.

Problem 2

When programming we often have an implicit *invariant* on our datatypes that is too complex to encode in our type system, but is crucial for justifying the correctness or safety of the code.

This can be modeled by a category of *subsets* where an object (X, P) is a pair of a set X and a subset $P \subseteq X$ of those values that satisfy the invariant. A morphism $f: (X, P) \to (Y, Q)$ is a function $f: X \to Y$ that preserves the invariant: if $p \in P$ then $f(p) \in Q$.

We can generalize this from subsets to "sub-objects" in any category as follows. Let \mathbb{C} be a category. A sub-object of an object A is a monomorphism $m : P \to A$. A morphism of sub-objects $(f, \phi) : (m : P \to A) \to (n : Q \to B)$ consists of a morphism $f : A \to B$ and a morphism $\phi : P \to Q$ such that the following diagram commutes:

$$\begin{array}{ccc} P & \stackrel{\phi}{\longrightarrow} & Q \\ \downarrow^m & & \downarrow^n \\ A & \stackrel{f}{\longrightarrow} & B \end{array}$$

The defines for any category \mathbb{C} a category $\operatorname{Sub}(\mathbb{C})$ of subobjects. Composition and identity are defined the same as in the arrow category (Awodey Chapter 1.6).

For $\mathbb{C} = \text{Set}$, Sub(Set) this generalizes our category of subsets slightly to allow arbitrary injective functions $m : P \rightarrow A$ as objects. We can view such a function as a presentation of the subset that is its image $\{x \in A | \exists p \in P.m(p) = x\}$. Then the property about ϕ demonstrates that f preserve this subset.

Let \mathbb{C} be any category with an initial object 0, terminal object 1 and for any pair of objects $A, B \in \mathbb{C}$ a product $A \times B$.

• Prove that $\operatorname{Sub}(\mathbb{C})$ has an initial object, terminal object and all (binary) products.

••••