Problem Set 3

January 27, 2022

Problem 1 The Product of Graphs

When working in a new mathematical domain, we can use category theoretic concepts to help us understand common constructions.

For this problem, a graph $G=\left(G_{v}, G_{e}\right)$ consists of a set of vertices G_{v} and an incidence relation $G_{e} \subseteq G_{v}^{2}$ telling us when there is a (directed) edge between two vertices.

A graph homomorphism $\phi: G \rightarrow H$ is a function on the vertices $\phi: G_{v} \rightarrow H_{v}$ that preserves the incidence relation: if $\left(v, v^{\prime}\right) \in G_{e}$ then $\left(\phi(v), \phi\left(v^{\prime}\right)\right) \in H_{e}$.

There are many constructions that are called the "product" of graphs, but up to isomorphism only one that satisfies the universal mapping property of a product.

Consider the following two constructions.
For any two graphs G, H define the box product $G \square H$ to be the following graph:

1. The set of vertices is given by the cartesian product $(G \square H)_{v}=G_{v} \times H_{v}$.
2. There is an edge $\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right) \in(G \square H)_{e}$ if and only if either of the following holds
(a) $\left(g, g^{\prime}\right) \in G_{e}$ and $h=h^{\prime}$.
(b) $g=g^{\prime}$ and $\left(h, h^{\prime}\right) \in H_{e}$.

For any two graphs G, H define the tensor product $G \otimes H$ to be the following graph:

1. The set of vertices is given by the cartesian product $(G \otimes H)_{v}=G_{v} \times H_{v}$.
2. There is an edge $\left((g, h),\left(g^{\prime}, h^{\prime}\right)\right) \in(G \otimes H)_{e}$ if and only if $\left(g, g^{\prime}\right) \in G_{e}$ and $\left(h, h^{\prime}\right) \in H_{e}$.

Both of these are useful ways to combine two graphs together, but only one of them is the true categorical product.

1. Show that one of these two products (\square, \otimes) gives the categorical product of graphs, i.e., always satisfies the universal mapping property of a product.
2. For the other, briefly explain why it fails to be a categorical product.

Problem 2

When programming we often have an implicit invariant on our datatypes that is too complex to encode in our type system, but is crucial for justifying the correctness or safety of the code.

This can be modeled by a category of subsets where an object (X, P) is a pair of a set X and a subset $P \subseteq X$ of those values that satisfy the invariant. A morphism $f:(X, P) \rightarrow(Y, Q)$ is a function $f: X \rightarrow Y$ that preserves the invariant: if $p \in P$ then $f(p) \in Q$.

We can generalize this from subsets to "sub-objects" in any category as follows. Let \mathbb{C} be a category. A sub-object of an object A is a monomorphism $m: P \mapsto A$. A morphism of sub-objects $(f, \phi):(m: P \mapsto A) \rightarrow(n: Q \mapsto B)$ consists of a morphism $f: A \rightarrow B$ and a morphism $\phi: P \rightarrow Q$ such that the following diagram commutes:

The defines for any category \mathbb{C} a category $\operatorname{Sub}(\mathbb{C})$ of subobjects. Composition and identity are defined the same as in the arrow category (Awodey Chapter 1.6).

For $\mathbb{C}=\operatorname{Set}, \operatorname{Sub}($ Set $)$ this generalizes our category of subsets slightly to allow arbitrary injective functions $m: P \rightharpoondown A$ as objects. We can view such a function as a presentation of the subset that is its image $\{x \in A \mid \exists p \in \operatorname{P.m}(p)=x\}$. Then the property about ϕ demonstrates that f preserve this subset.

Let \mathbb{C} be any category with an initial object 0 , terminal object 1 and for any pair of objects $A, B \in \mathbb{C}$ a product $A \times B$.

- Prove that $\operatorname{Sub}(\mathbb{C})$ has an initial object, terminal object and all (binary) products.

