
Problem Set 4

February 7, 2022

Homework is due the midnight before class on the 17th. If you want to volunteer
to present this problem, e-mail me.

Both problems involve the free bi-cartesian category (BiCC) generated from an
empty graph. We present this in full here for reference.

First, the types

1 type
A type B type

A×B type
0 type

A type B type

A+B type

Next, the terms

x : A ` x : A x : A ` () : 1
x : A ` t1 : B1 x : A ` t2 : B2

x : A ` (t1, t2) : B1 ×B2

x : A ` t : B1 ×B2

x : A ` π1t : B1

x : A ` t : B1 ×B2

x : A ` π2t : B2

x : A ` t : 0

x : A ` match0t : B

x : A ` t : A1 + A2 x1 : A1 ` t1 : B x2 : A2 ` t2 : B

x : A ` match+t{σ1x1.t1}{σ2x2.t2} : B

x : A ` t : B1

x : A ` σ1t : B1 +B2

x : A ` t : B2

x : A ` σ2t : B1 +B2

And the definition of substitution t[s/x] by induction on t:

x[s/x] = s

()[s/x] = ()

(t1, t2)[s/x] = (t1[s/x], t2[s/x])

(πit)[s/x] = πit[s/x]

(match0t)[s/x] = match0t[s/x]

(match+t{σ1x1.u1}{σ2x2.u2})[s/x] = match+t[s/x]{σ1x1.u1}{σ2x2.u2}
(σit)[s/x] = σit[s/x]

1

Problem 1 2

And finally the equational theory. Note that we implicitly assume in any equality
s = t that both are well-typed with the same typing.

t = t
s = t

t = s

s = t t = u

s = u

t = t′

πit = πit
′

t1 = t′1 t2 = t′2
(t1, t2) = (t′1, t

′
2)

t = t′

σit = σit
′

t = t′ s1 = s′1 s2 = s′2
match+t{σ1x1.s1}{σ2x2.s2} = match+t

′{σ1x1.s′1}{σ2x2.s′2}

x : A ` t : 1

t = ()
πi(t1, t2) = ti

x : A ` t : B1 ×B2

t = (π1t, π2t)

x : A ` s : 0 y : 0 ` t : B

t[s/y] = match0s
match+σit{σ1x1.s1}{σ2x2.s2} = si[t/xi]

x : A ` s : A1 + A2 y : A1 + A2 ` t : B

t[s/y] = match+s{σ1x1.t[σ1x1/y]}{σ2x2.t[σ2x2/y]}
Feel free to use the following lemma in your proofs below.

Lemma 1. If x : A ` t : B and x : A ` t′ : B and y : C ` u : A and y : C ` u′ : A,
then if t = t′ is derivable and u = u′ is derivable then

t[u/x] = t′[u′/x]

is derivable.

In class we showed that this presents a category FreeBiCC that is the free bi-
cartesian category on the empty graph. When we specialize this theorem to the
empty graph, we get a simpler formulation of the UMP: the FreeBiCC on the empty
graph is initial in the category of bi-cartesian categories and bi-cartesian functors,
i.e., functors that preserve bi-cartesian structure.

Lemma 2 (UMP of Free BiCC). The syntax of the free bi-cartesian category defines
a category FreeBiCC that is an initial object in the category of bi-cartesian categories
and bi-cartesian functors.

Proof. Let C be a bi-cartesian category. To construct a map from FreeBiCC to C,
by the UMP of FreeBiCC as the free bi-cartesian category generated from the empty
graph, it is sufficient to define a graph homomorphism i : ∅ → U(C). Then ı̂ :
FreeBiCC→ C is

1. a functor that preserves products, coproducts, initial and terminal object, along
with pairing, projection, co-pairing, injection.

2. The unique functor satisfying U ı̂ ◦ η = i where η : ∅ → U(FreeBiCC) is a fixed
graph homomorphism.

But note that since the empty graph is the initial object in the category of graphs,
this uniqueness condition is satisfied by any functor preserving bi-cartesian structure,
and so ı̂ is the unique arrow from FreeBiCC to C.

EECS 598: Category Theory PS 1

Problem 2 3

Problem 1 Duality

Notice that every type in the free BiCC has a dual: products are dual to coproducts
and terminal objects are dual to initial objects.

To demonstrate this duality, define an op translation from the free BiCC to its
opposite as follows.

1. Define a translation Aop for each type.

2. Define a translation top on terms such that if

x : A ` t : B

then
k : Bop ` top : Aop

3. Show that the translation is an involution: (Aop)op = A and for any t, (top)op = t
in the equational theory. Are there any t such that (top)op is not syntactically
identical to t? If so, provide an example.

.

Problem 2 Logical Relations

We can interpret the terms of the free Bi-cartesian category on an empty graph as a
very simple programming language or formal logic.

As a logic, we interpet 0 as falsehood, + as disjunction, 1 as trivial truth and ×
as conjunction. To be a useful logic, we should verify that there is no proof of false.
Of course, there are proofs such as

x : 0× (1 + 1) ` π1x : 0

but we would like that there is no proof of false from a trivial assumption, i.e., there
is no proof

x : 1 ` t : 0

This property is called consistency of a logic.
To be a useful programming language1, we should verify that we can evaluate

programs down to a result. Since we added no facilities for effects or recursion, all
programs should run to some kind of value in finite time. To be concrete, we should
prove that any program of type 1 + 1 evaluates to σ1() or σ2(), which we can think of
as a boolean. The specification for our evaluator is that it should respect our notion
of βη equality, so t should evaluate to σ1() if and only if t = σ1() in our equational
theory. Of course, there are terms of type 1 + 1 that are not equal to σ1() or σ2(),
such as

x : 1 + 1 ` x : 1 + 1

1or constructive logic

EECS 598: Category Theory PS 1

Problem 2 4

instead we should restrict to programs that only take a trivial input. So we want to
show that terms of the form:

x : 1 ` t : 1 + 1

Are all equal to σ1() or σ2(). A programming languages that satisfies this or a similar
property is called normalizing.

We should also make sure that our programming language specification is not
trivial. In particular, since we did not add facilities for non-determinism, we should
verify that if a program evaluates to σ1(), then it cannot also evaluate to σ2(). That
is, we should show that σ1() 6= σ2().

• Show that the terms x : 1 ` σ1() : 1 + 1 and x : 1 ` σ2() : 1 + 1 in the
free BiCC on the empty graph are not equal. Hint: use the UMP of the free
BiCC to construct a functor F from the free BiCC to another category where
F (σ1()) 6= F (σ2()).

Showing consistency/normalization for a calculus can be difficult. One of the most
robust proof techniques for proving this is called the method of logical relations. Let’s
use the method of logical relations to prove consistency and normalization of the free
BiCC.

The method of logical relations in this case is centered on a category we call LR
defined as folows:

1. The objects of LR are pairs (A,P) of a type A in the free BiCC and a subset
of the terms of type A with trivial input: P ⊆ {t |x : 1 ` t : A}

2. A morphism from (A,P) to (B,Q) is a term y : A ` s : B such that for any
t ∈ P , s[t/y] ∈ Q.

We will then show that LR is itself a bi-cartesian category with the following
definitions of the objects involved:

1. The initial object is (0, ∅)

2. The coproduct of (A,P) and (B,Q) is (A+B,R+) where R+ is

{u | (∃t ∈ P. u = σ1t) ∨ (∃t ∈ Q. u = σ2t)}

3. The terminal object is (1,>) where > = {t |x : 1 ` t : 1}.

4. The product of (A,P) and (B,Q) is (A×B,R×) where R× is

{u | (x : 1 ` u : A×B) ∧ π1u ∈ P ∧ π2u ∈ Q}

Now, prove consistency and normalization for BiCC as follows:

1. Define identity and composition in LR, and prove it forms a category.

EECS 598: Category Theory PS 1

2. Show that the definitions above give LR the structure of a bi-cartesian category,
and that the “forgetful” functor U : LR→ FreeBiCC preserves the bi-cartesian
structure, i.e., it takes products to products, projections to projections, etc.

3. Conclude using the UMP of the free bi-cartesian category that there is a functor
from s : FreeBiCC → LR that preserves bi-cartesian structure and is a section
of U , that is:

U ◦ s = idFreeBiCC

4. Prove as a corollary that

(a) BiCC is consistent: there is no term x : 1 ` t : 0

(b) BiCC is normalizing: any term x : 1 ` t : 1 + 1 is equal to σ1() or σ2() in
the equational theory.

.

