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Last time, we talked about Intuitionistic Propositional Logic and ended with two
questions:

1. Is IPL consistent? That is, can the judgment · ⊢ ⊥ be derived)?

2. Does the law of the excluded middle follow from the rules for IPL? In other
words, can we derive the judgment · ⊢ X ∨ ¬X?

1 Introduction

1.1 Semantics

Semantics refers to the underlying mathematics associated with the syntax of a par-
ticular model. For example, IPL represents a model instance. As part of the syntax,
we use the symbols {∧,⊥,∨,⊤,⊃}. However, these symbols are fundamentally mean-
ingless without an underlying semantics.

1.2 Model Theory

It turns out that IPL presents a Heyting algebra. Heyting algebra are an abstract
structure that can be used to provide underlying meaning for IPL propositions and
implication. The study of these models is called Model Theory. The algebra is a way
of formalizing the semantics.

A good analogy for Model Theory is linguistics. Even though English and Chinese
aren’t mutually intelligible, there are lots of similar ideas you can convey using sen-
tences in both languages. Model Theory is akin to studying the underlying meaning
of those sentences (semantics) and the particulars of how they are constructed in their
respective languages (syntax).

IPL serves as a good introduction to more obscure instances of the Heyting algebra,
because IPL is particularly well-known in the form of constructive logic. We will later
find that some of the obscure instances will be useful for proving general properties
about the Heyting algebra. This process will illustrate the usefulness of thinking of
IPL in terms of Model Theory.
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IPL support many models, including a Boolean model. This is because IPL is a
subsystem of classical logic, where the law of the excluded middle (and, equivalently,
double negation elimination) is not present. When we learned classical logic in EECS
203, we learned the definitions of implication, conjunction (logical AND), and dis-
junction (logical OR) in terms of their truth tables. In Category Theory, we take a
more fundamental approach, defining these connectives in much more general terms.

2 A Boolean Semantics for IPL

In IPL, every closed proposition (i.e. a proposition with no unbounded variables) can
be interpreted as either true or false. We can assign each proposition a value in {0, 1},
corresponding to false and true respectively. We use JXK to represent the denotation
of a proposition X. We can now formalize our syntax for IPL as follows:

J⊥K := 0

J⊤K := 1

JA ∧BK := min(JAK, JBK)
JA ∨BK := max(JAK, JBK)

JA ⊃ BK :=

{
1 JAK ≤ JBK
0 otherwise

These definitions expand the evaluation of denotations to all judgments, including
the connective forms.

We can extend this to an interpretation for a context, Γ. This is shorthand for
the conjunction of many propositions.

Γ = {A1, . . . , An} (may be empty)

J{A1, . . . , An}K = min{JAK | A ∈ Γ}

We will later define our semantics in terms of meets (greatest lower bounds) and joins
(least upper bounds) respectively, which are a general property of Heyting algebras.

2.1 Proving Correctness

Theorem 1 (Soundness of Boolean Model). If Γ ⊢ A is provable in IPL, then JΓK ≤
JAK.

To prove this we need to show that each rule of IPL gives us a true statement
about booleans.

2.1.1 Assumption

We can show that the assumption rule is sound.

·
Γ, B ⊢ B

Assumption
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Recall that Γ is shorthand for the conjunction of a set of propositions. Under Boolean
semantics, the above rule is interpreted as the statement:

min{JAK | A ∈ {Γ} ∪B} ≤ JBK

By definition of minimum, this holds.

2.1.2 Substitution

Some fundamental rules of inference, such as substitution, are admissible, meaning
they can be derived from the existing rules of inference in the model. It is highly
useful to minimize the number of rules, theorems, and assumptions tied to a particular
model; in this case, we can reuse proofs of rules of inference to verify the correctness
of admissible rules.

2.1.3 Top

In IPL, we had the rule
·

Γ ⊢ ⊤
⊤-I

For this to work in the Booleans, we need JΓK ≤ J⊤K. This holds because J⊤K = 1,
the maximum element in the set of Boolean values.

2.1.4 Conjunction

Recall the rule from IPL:
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B
∧-I

In the Booleans, the following must hold:

JΓK ≤ JAK JΓK ≤ JBK
JΓK ≤ min(JAK, JBK)

This essentially follows from the definition of minimum; if JΓK is smaller than JAK and
JBK, then it is smaller than the minimum between them. More formally, we know the
minimum of a set is less than or equal to its constituents (min(JAK, JBK) ≤ A,B), so
our proof follows from transitivity of ≤.

We saw before that the introduction rule for conjunction is invertible. There-
fore, the validity of the conjunction-introduction rule implies the validity of the
conjunction-elimination rule.

2.1.5 Disjunction

There are two ways to introduce disjunction in IPL:

Γ ⊢ A

Γ ⊢ A ∨B
∨-I-L
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Γ ⊢ B

Γ ⊢ A ∨B
∨-I-R

Let’s examine the left introduction form.

JΓK ≤ JAK
JΓK ≤ max(JAK, JBK)

This proof is slightly more complicated than the conjunction case, because JΓK may
be less than or equal to either JAK or JBK. In both cases, though, it holds that
JΓK is less than the maximum between the two (by transitivity of ≤). Importantly,
JAK, JBK ≤ max(JAK, JBK). It suffices to use a proof-by-cases to show that this rule
is valid.

2.2 Consistency of IPL

Theorem: Falsity cannot be derived from an empty context in IPL.
The Boolean semantics we have demonstrated for IPL are sufficient to prove consis-

tency. By the soundness theorem of the boolean semantics, we can say the following:

Γ ⊢ B

JΓK ≤ JBK

Now, substitute · for Γ and ⊥ for B:

· ⊢ ⊥
J·K ≤ J⊥K

By definition, J⊥K = 0. So how can we interpret J·K? Under the standard interpre-
tation that min represents the meet (or the infimum) of a set, we take the greatest
lower bound of the empty set, which is 1, the greatest element of the booleans.

· ⊢ ⊥
1 ≤ 0

Therefore, because 1 ≤ 0, we have derived a contradiction, and so · ⊢ ⊥ cannot be
derivable.

2.3 Law of the Excluded Middle

Theorem: The law of the excluded middle is not admissible in IPL.
Recall that the LEM (law of the excluded middle) asserts Γ ⊢ A ∨ ¬A for all

propositions A in any context Γ. LEM is certainly consistent with IPL; in fact,
¬¬(X ∨ ¬X) is a provable result in IPL. In other words, although X ∨ ¬X is not
derivable, we can definitively say that it is not false. (This is also why double-negation
elimination is tantamount to the LEM; if we accept the double-negation elimination
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rule, we could apply it and unlock the LEM for free.) Classical logic is a famous
example of a Boolean algebra where LEM is perfectly consistent.

So what does it mean for the LEM to not be admissible in IPL? It means that
it cannot not be derived from IPL. So to show this we need to come up with one
particular proposition A and one context Γ and show that there is no proof of Γ ⊢
A ∨ ¬A. We will pick Γ = · and A to be a propositional variable X. So we seek to
prove that · ⊢ X is not provable in IPL. This may sound difficult to prove (how can
you prove that something cannot be proven?), but with the help of Model Theory, we
can do it. The idea is to construct a valid model of IPL, and then show that there is
an element that gives a counterexample to the LEM (that is, that the LEM is invalid
within that model), and interpret X as that element.

2.3.1 Generalization

Before we introduce a model that will let us prove the independence of LEM, we need
to generalize a few ideas from our IPL semantics.

First, we need to extend our semantics to account for propositional variables. For
this we require a function σ that maps propositions to values within a given model.
Concretely, for IPL Boolean semantics, σ : IPL → {0, 1}, and then we extend the
denotations JXKσ = σ(X).

We also provide a general formula for proving that a particular system is a valid
instance of a model. We can use σ as an evaluation symbol, and we must also prove
that all of the axioms of our model are valid within that system.

2.3.2 Sierpinski Model

The model we will use as a counterexample to LEM is the Sierpinski Model, which
has three possible values: {0, 1/2, 1} (where 0 ≤ 1/2 ≤ 1). We can reuse much of the
same syntax and semantics from IPL (therefore preserving correctness). Illustrative
of the usefulness of generalization: we can freely modify the set of values (in this case,
from {0, 1}) and maintain the fundamental characteristics of our model, because the
rules and axioms within our model are proven independent of the set of values. Of
course, in a more formal analysis, we would want to verify that all of our axioms
remain valid.

The evaluation for implication must change to fit the Sierpinski model. Define a
new operator ⇒ which inherits most of its semantics from ⊃ with a new evaluation:

JA ⇒ BK :=

{
1 JAK ≤ JBK
JBK otherwise

This new operator is backwards-compatible, because the only time in Boolean algebra
where the second case is taken is when JBK = 0. When JBK = 1, the first case always
gets matched, because 1 is the maximum value in Boolean algebra.

Another important note is that J⊥K = 0 and J⊤K = 1 still hold.
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Recall the definition of the LEM:

·
· ⊢ X ∨ ¬X

LEM

If we assign 1/2 to X, i.e., σ(X) = 1/2, we show that LEM cannot hold:

·
J·K ≤ max{JXKσ, JX ⇒ ⊥Kσ}

From the definition of join, J·K = 1. Also, JXKσ = σ(X) = 1/2 and JX ⇒ ⊥KX = 0
(since min(1/2, 0) = 0; intuitively, X is not ”false”). Therefore, this expression is
equivalent to 1 ≤ 1/2, which concludes the proof by contradiction.

So if we can show that all of the rules of IPL can be interpreted in the Sierpinski
model, then we can prove that LEM is not admissible.

3 Order Theory

In order to prove two important results for IPL, we first introduced the boolean
model for IPL to show that IPL is consistent, then we used a contradiction in another
instance of that model to show that LEM is independent of the model. How can we
formalize the very idea of a model of IPL?

All of our models had conjunction, disjunction, and implication in common. Im-
plication naturally lends itself to an idea of ordering, where certain propositions imply
other propositions.

In the simplest case, in the Boolean model, we have 0 and 1 where 0 ≤ 1. However,
we also have intermediate propositions that we can construct an order on. If A ⊃ B,
then we can say A ≤ B (in this case, ≤ refers to order, not just evaluation, although
the two ideas are quite connected). For the case of ⊥ and ⊤, we can say that ⊥ ≤ ⊤
(0 ≤ 1) but not ⊤ ≤ ⊥ (1 ≤ 0).

Conjunction and disjunction also relate propositions in an ordered manner. For
example, the conjunction A ∧ B implies both A and B. Hence, A ∧ B ≤ A,B.
In the case of disjunction (which is dual to conjunction in a sense), we have that
A,B ≤ A ∨B.

3.1 Preorders and Posets

Definition 1. A preorder X consists of

1. |X|, a set

2. ≤X , a binary relation on |X|

3. Reflexivity: x ≤X x for all x ∈ |X|

4. Transitivity: x ≤X y ∧ y ≤X z ⇒ x ≤X z for all x, y, z ∈ |X|
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Definition 2. A partial order, or poset for short, is a preorder that additionally
satisfies:

5. Antisymmetry: x ≤X y ∧ y ≤X x ⇒ x = y for all x, y ∈ |X|

3.2 Hasse Diagrams

A Hasse diagram visualizes a poset in terms of its ordering. Some examples:

3.3 Lindenbaum Algebra

Generally, we can take a logical system and turn it into a preorder. For example, in
IPL, we have a set of propositions which are (typically) associated with each other
using conjunctions, disjunctions, and implications. As explained previously, these
connectives create a preorder over the propositions.

Our poset can be divided into equivalence classes (vertical layers) where each
element in a given layer is greater than any element in the lower layers and lesser
than any element in the higher layers. For IPL, the highest layer is the equivalence
class {⊤, . . .}, all of the propositions equivalent to ⊤, and the lowest layer is {⊥, . . .}
all of the propositions equivalent to ⊥. This poset whose elements are equivalence
classes of propositions and ordered by provable is called the Lindenbaum algebra of
the logic.

3.4 Homomorphisms

A homomorphism is a mapping or transformation between two spaces that preserves
their fundamental properties. In the case of preorders, we are interested in homomor-
phic functions which map each element without changing the overall ordering. We
call these functions monotone functions (also known as order-preserving functions).

Definition 3. If P,Q are preorders, a monotone function f : P → Q is a function
of the underlying sets f : |P | → |Q| that satisfies the monotonicity property: ∀x, y ∈
|P |.x ≤P y ⇒ f(x) ≤Q f(y).

Homomorphisms are particularly useful for reasoning about infinite sets because
they preserve certain abstract properties. Monotonicity is transitive; the composition
of two monotone functions is also monotone.
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A dual form of the monotone function is the antitone (or contravariant) function,
which reverses the ordering. An example is negation over the integers. The composi-
tion of two antitone functions is monotone (since we reverse the order twice, restoring
the original order).

3.5 Meets and Joins

A meet is a greatest lower bound on a set, and a join is a least upper bound. Formally,
a meet on S ⊆ X is a value x such that:

1. x ≤ y for all y ∈ S

2. z ≤ y → z ≤ x for all y ∈ S, z ∈ X

A join may be defined as follows:

1. y ≤ x for all y ∈ S

2. y ≤ z → x ≤ z for all y ∈ S, z ∈ X

Recall that earlier, in our Boolean model, we defined conjunction and disjunction
as follows:

JA ∧BK := min(JAK, JBK)
JA ∨BK := max(JAK, JBK)

These definitions can be generalized into meets and joins. In our generalization, we
denote the conjunction of x, y to be the meet of {x, y}, and we denote the disjunction
of x, y to be the join of {x, y}. This definition provides elegant evaluation semantics
for Γ in IPL: we define JΓK to be the meet of Γ.

A meet semilattice is a poset which has a meet for every subset. Dually, a join
semilattice is a poset which has a join for every subset. A poset which is both a meet
and join semilattice is called a lattice; such a poset has meets and joins on all subsets.

4 Heyting Algebras

The Heyting algebra is an even higher level of abstraction which generalizes our
Boolean and Sierpinski models. This model will encapsulate all that we have discussed
regarding Order Theory, meets, and joins. Recall that in our Boolean algebra for IPL,
we defined conjunction and disjunction in terms of minimums and maximums.

With the help of Order Theory, we have found that IPL obey a more general idea of
ordering, where propositions are ordered by logical connectives. Recall that we started
this lecture asking whether IPL was consistent and whether LEM is independent of
IPL semantics.

nWe have already generalized conjunction and disjunction semantics into meets
and joins. The last step is to create a general model of what implication means.
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A Heyting implication structure is a binary operation x → y satisfying (z ∧ x) ≤
y ≡ z ≤ x ⊃ y. This is the minimal necessary structure to allow for implication
elimination (if P and P ⊃ Q, then Q), which is a fundamental axiom of Heyting
algebras.

Definition 4. A Heyting algebra is a poset with

• finite meets

• finite joins

• Heyting implications

And we can show (next time) that Heyting algebras provide a canonical notion of
model of IPL.
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