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1 Partially Ordered Set

A partial order on a set X is a binary relation ≤ which is reflexive, transitive and
anti-symmetric. A set X equipped with a partial order is called a partially ordered
set, or somtimes a poset.

1.1 Meets, Joins, and Heyting Implication

Let P be a poset and S ⊆ |P|, where |P| = {∗}, the underlying set of the poset.

Definition 1. Z is a meet of S, if it’s the greatest element of {x ∈ |P| |x ≤ S}. The
meet of subset S is denoted as

∧
S.

Definition 2. Z is a join of S, if it’s the greatest element of {x ∈ |P| |x ≤ S}. The
join of subset S is denoted as

∨
S.

Definition 3. Z is a Heyting Implication of x, y ∈ |P|, if it’s the greatest element of
{w ∈ |P| |w ∧ x ≤ y}. The Heyting Implication of elements x, y is denoted as x ⇒ y.

Suppose the subset S contains finite elements x1, x2, . . . , xn. The set operators meet
and join can be correspondingly related to the binary operators conjunction and
disjunction as shown in the following table.

Set Operator Binary Operator Transformation Base Condition

meet
∧

conjunction ∧
∧

S = x1 ∧ x2 ∧ . . . ∧ xn

∧
∅ = ⊤

join
∨

disjunction ∨
∨

S = x1 ∨ x2 ∨ . . . ∨ xn

∨
∅ = ⊥

Interestingly, there is a mutual conversion between meets and joins in specic condi-
tions:

∧
P∅ =

∨
P and

∨
P∅ =

∧
P

1
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1.2 Lattice

Definition 4. Lattice is a poset with finite meets and finite joins.

Definition 5. Complete Lattice is a poset with all meets and all joins.

Definition 6. ∧-Semilattice is a poset with finite meets.

Definition 7. ∨-Semilattice is a poset with finite joins.

Definition 8. Heyting Algebra is a lattice with all Heyting Implications.

Notice that finite means the property exists in any finite subset S, while all means
the property exists in any subset S, no matter finite or infinite.

2 Heyting Algebra Semantics

2.1 Soundness Theorem

Given a set Σ0 of propositional variables, define IPLΣ0 to be the propositions of IPL
with variables drawn from Σ0. An axiom relative to Σ0, is an element of IPL∗

Σ0
×IPLΣ0

which we write as A1, . . . ⇒ A′. Then an IPL signature is a pair of a set Σ0 and a set
of axioms Σ1 relative to Σ0.

Theorem 1 (Interpretation of Propositions in HA, Soundness). Let Σ be an IPL
signature.

Given any Heyting algebra P and a function σ : Σ0 → |P| that interprets the
variables, we can extend this to a function J·Kσ : IPLΣ0 → |P| as follows:

JXKσ = σ(X)

J⊤Kσ = ⊤P

JA ∧BKσ = JAKσ ∧P JAKσ
J⊥Kσ = ⊥P

JA ∨BKσ = JAKσ ∨P JAKσ
JA ⊃ BKσ = JAKσ ⇒P JAKσ

This interpretation is extended to contexts by JΓKP =
∧

P{JAKσ|A ∈ Γ}
If for each axiom Γ ⇒ A ∈ Σ1 it is the case that JΓKσ ≤P JAKσ, then if Γ ⊢ A is

provable in IPL, JΓKσ ≤P JAKσ.

Proof. Given Γ ⊢ A, we seek to prove that JΓKσ ≤P JAKσ. Since proofs of Γ ⊢ A are
inductively defined we can show this by structural induction over such proofs. At a
high level this means that for each rule

Γ1 ⊢ A1 Γ2 ⊢ A2 . . . Γn ⊢ An

Γ ⊢ A
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we show the implication

JΓ1Kσ ≤P JA1Kσ JΓ2Kσ ≤P JA2Kσ . . . JΓnKσ ≤P JAnKσ
JΓKσ ≤P JAKσ

That is, assuming all of the inductive hypotheses above the line are true then we can
prove the conclusion below the line.

We give some example cases

We call the inputs to the soundness theorem: a Heyting algebra P with interpre-
tation σ of Σ0 such that all of the axioms in Σ1 are satisfied in P a model of the logic
IPL generated by Σ. Then the soundness theorem says that this notion of model is
sound: any theorem that is provable in the logic is true in every model.

2.1.1 Applications of the Soundness Theorem

Theorem 2. The ⊥-Introduction Law · ⊢ ⊥ is not provable in pure IPL (IPL with
the empty signature (∅, ∅)).

Proof. Assume to the contrary that · ⊢ ⊥ is provable.
Define the boolean poset B to be the set {0, 1} with the order inherited from the

integers (i.e., 0 ≤ 1). B is a Heyting algebra (proof left as exercise).
By the soundness theorem, since · ⊢ ⊥ is provable,

∧
B ∅ ≤B ⊥B must be true. But∧

∅ = ⊤B = 1 and ⊥B = 0, so this would mean that 1 ≤B 0 which is false, so we have
derived a contradiction.

Theorem 3. The Law of Excluded Middle · ⊢ X ∨ (X ⊃ ⊥) is not provable in IPL
with one propositional variable X and no axioms.

Proof. Assume to the contrary that · ⊢ X ∨ (X ⊃ ⊥) is provable.
Define the Sierpinski poset S to be the set {0, 1

2
, 1} with the order inherited from

the rationals (i.e., 0 ≤ 1
2
≤ 2). Define an interpretation σ by σ(X) = 1

2
. The

Sierpinski poset is a Heyting algebra (exercise).
Then by the soundness theorem, since · ⊢ X ∨ (X ⊃ ⊥) is provable it must be the

case that 1 ≤S
1
2
∨S (

1
2
⇒S 0). However 1

2
⇒S 0 = 0 and so 1

2
∨ (1

2
⇒ 0) = 1

2
. This

implies that 1 ≤S
1
2
which is again a contradiction.

2.2 Completeness Theorem

The soundness theorem says provable statements are true in every model. The com-
pleteness theorem gives us a converse: if a statement is true in every model then it
must be provable.

Theorem 4. Let Σ be an IPL signature and Γ, A well-formed context and proposition
in IPL generated from Σ. Then if for every model (P, σ)

JΓKσ ≤P JAKσ

is true, Γ ⊢ A is provable in IPL generated by Σ.
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Proof. We show this by defining a single model, the Lindenbaum algebra L where
truth in L implies provability in IPL. First, define a preorder whose elements are
simply the propositions of IPL generated by Σ and where A ≤L B is defined to be
provability: A ⊢ B is provable. Then using the substitution and assumption rules
this is a preorder:

• Reflexive. For any proposition A,

A ⊢ A
Assumption

• Transitive. For any proposition A,B,C,

A ⊢ C

B ⊢ C

A,B ⊢ C
Weakening

A ⊢ C
Substitution

Then according to our definition of ≤L(IPL), ∀A,B,C,A ≤L(IPL) B,B ≤L(IPL)
C : A ≤L(IPL) C.

However, this is not a poset since there are propositions such as ⊤ and ⊤∧⊤ that are
equi-provable but not equal. Then define L to be the corresponding poset quotiented
by the equivalence A ∼= B if A ⊢ B and B ⊢ A.

Then we need to show that L is a Heyting algebra. To do this we show A ∧ B is
the binary meet in L, A∨B is the binary join, ⊤ is the empty meet, ⊥ is the empty
join and A ⊃ B is the Heyting implication. We show one example, the binary meet.

We need to show that A∧B is the greatest proposition such that that A∧B ⊢ A,
and A ∧B ⊢ B.

1. First, A ∧B ⊢ A using the elimination rule and assumption:

A ∧B ⊢ A ∧B
Assumption

A ∧B ⊢ A
∧E1

A ∧B ⊢ B follows similarly.

2. Assume that C ⊢ A and C ⊢ B. Then we need to show that C ⊢ A ∧ B. But
this is precisely the ∧I rule.

Finally, we can define the interpretation of variables σ(X) = X as simply theme-
selves, and therefore by induction we can see that JAKσ = A. Additionally, all axioms
are clearly satisfied using the corresponding axiom rule.

Finally, to complete the proof, assume JΓKσ ≤L JAKσ. Then
∧
{B|B ∈ Γ} ⊢ A,

i.e. if Γ = B0, . . . then we have

B0 ∧ (. . .⊤) ⊢ A
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Then the final step is to show that the rule

B0, . . . ⊢ A

B0 ∧ (. . .⊤) ⊢ A

∧
L

is admissible by induction on Γ.

2.3 Initiality/Freeness Theorem

We conclude by noting the following “categorical” re-formulation of the soundness
and completeness theorems.

Definition 9. Let P and Q be Heyting algebras. A Heyting algebra homomorphism
is a monotone function φ : P → Q that furthermore preserves finite meets, finite joins
and Heyting implications. I.e.,

• φ (⊤P) = ⊤Q.

• φ (⊥P) = ⊥Q.

• φ (A ∧P B) = φ (A) ∧Q φ (B).

• φ (A ∨P B) = φ (A) ∨Q φ (B).

• φ (A ⇒P B) = φ (A) ⇒Q φ (B).

If (P, σ) and (Q, τ) are models of Σ, then a homomorphism of models is a Heyting
algebra homomorphism ϕ : P → Q that furthermore satisfies ϕ(σ(X)) = τ(X) for
every X ∈ Σ0.

Theorem 5. Fix a signature Σ, and let (L, ι) be the Lindenbaum algebra, where ι is
the subset inclusion of propositional variables into propositions. For any model (P, σ)
of Σ there is a unique homomorphism of models J·K(P,σ) : (L, ι) → (P, σ) that satisfies
Jι(X)K(P,σ) = σX.

We can visualize this as the following diagram. We say that σ is the unique
homomorphism making the following diagram “commute”:

L P

Σ0

σ

ι J·K

Proof. JK(P,σ) is the interpretation function defined in the statement of the soundness
theorem. It clearly preserves the Heyting algebra and satisfies JXK(P,σ) = σX by
definiiton.

Furthermore, to prove J·K(P,σ) is unique, we assume there is some other homomor-
phism φ that extends σ and we must show φ = J·K(P,σ). This follows by induction on
A:
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1. φ(X) = σ(X) = Jι(X)K(P,σ) by assumption.

2. φ(⊤) = ⊤P = J⊤K(P,σ) since φ, J·K(P,σ) are Heyting algebra homomorphisms.

3. φ(A ∧ B) = φ(A) ∧P φ(B) and JA ∧BK = JAK ∧P JBK since φ, J·K are Heyting
algebra homomorphisms. Then the result follows because φA = JAK and φB =
JBK by inductive hypothesis.

4. The remaining cases are similar to the previous.

3 Syntax and Semantics

This situation where we have an initiality theorem for a logic with a certain notion
of model will be a running theme throughout the course. We will study syntactic
systems alongside a notion of semantic model and prove such an initiality theorem.
This situation fruitfully benefits both sides: to a mathematician it says we can use
the syntax to more easily make constructions in our semantic models, and to a com-
puter scientist it says we can use semantic tools to more easily prove facts about our
syntactic systems.

Already, we can see some more examples of this situation by taking subsystems
of IPL and considering models, each of which will be posets with structure already
present in a Heyting algebra. The following table shows some subsystems of Intu-
itionistic Propositional Logic and their corresponding order-theoretic semantics for
which a similar initiality theorem can be proven.

Syntax / Logic Semantics / Models

IPL () or IPL (∧,⊤) ∧-Semilattice
IPL (∧,⊤,⊃) ∧-Semilattice with Heyting Implication

IPL (∧,∨,⊤,⊥) Distributive Lattice
IPL (∧,∨,⊤,⊥,⊃) Heyting Algebra

The reason that the system IPL() with no connectives works is the same as IPL(⊤,∧)
is that IPL() already implicitly contains something like ⊤ and ∧ in the form of the
empty context and concatenation of contexts.

To get a system whose semantics are all posets rather than only ∧-Semilattices,
we could define a very weak where all judgments are of the form A ⊢ B, i.e., where
we always have exactly one assumption. Such a system could be called Unary propo-
sitional logic (UPL).

Syntax / Logic Semantics / Models

UPL () Posets
UPL (∧,⊤) ∧-Semilattices
UPL (∨,⊥) ∨-Semilattices

UPL (∧,∨,⊤,⊥) Lattices (not necessarily distributive)
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Open-ended exercise: how would you design the syntax of UPL so that these ini-
tiality theorems hold? Why does IPL (∧,∨,⊤,⊥) have distributive lattices as models
but UPL (∧,∨,⊤,⊥) has lattices that might not be distributive?
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