
Lecture 4: Simple Type Theory: Syntax and
Axiomatic Semantics

Lecturer: Max S. New
Scribe: Yanjun Chen

Jan. 23, 2023

Changes from class: all congruence rules are included.

1 Introduction

Let us consider a simple judgment in IPL: · ⊢ ⊤ ∨⊤. This is certainly provable, and
in fact there are many ways to prove it. For example,

⊤I
· ⊢ ⊤ ∨I1· ⊢ ⊤ ∨ ⊤

⊤I
· ⊢ ⊤ ∨I2· ⊢ ⊤ ∨ ⊤

⊤I
· ⊢ ⊤

⊤I
· ⊢ ⊤ ∧I

· ⊢ ⊤ ∧ ⊤ ∧E1· ⊢ ⊤ ∨I1· ⊢ ⊤ ∨ ⊤
Which of these should we consider to be the same proof? The first two have

analogous structure, but the first one uses a ∨ introduction of the left ⊤ while the
second one uses ∨ introduction of the right ⊤. The third is structurally different, but
ultimately proves the theorem by using ∨ introduction for the left ⊤. We might say
that the third is essentially the same argument as the first, but takes an unnecessary
“detour” to prove ⊤⊤. Today we will see a system for deciding when two proofs are
equal such that the first and third are equal but the second proof here is considered
to be different. Furthermore, in this system we will eventually show that every proof
of · ⊢ ⊤ ∨ ⊤ is ultimately equal to the first or second proof.

This is related to a more general property, the disjunction property for IPL.

Theorem 1 (Disjuction Property). If · ⊢ A ∨B, then · ⊢ A or · ⊢ B.

We will delay proving this for a few sessions as we will develop some tools to assist
us.

This theorem tells us that whenever we have · ⊢ A∨B, then there is a proof that
ends with an introduction rule:

· ⊢ A ∨I1· ⊢ A ∨B

· ⊢ B ∨I2· ⊢ A ∨B

1



Problem 2 2

Furthermore this is a constructive proof, we can construct a computer program
that, given a syntactic description of the derivation of · ⊢ A ∨ B, one can produce a
derivation for · ⊢ A or · ⊢ B. And in our system of

Note: this theorem is not trivial to prove. For example, the derivation shown
below can be used to extract proof of A or B.

...

· ⊢ (A ∨B) ∧ C
∧E1· ⊢ A ∨B

Note: if the context is not empty, the disjunction property does not hold. For
example, A ∨B ⊢ A ∨B is provable by assumption, but we can’t necessarily extract
a proof of A ∨B ⊢ A or A ∨B ⊢ B. As a specific counter-example take X ∨ (¬X) ⊢
X ∨ (¬X).

From the disjunction property and the soundness theorem, it also follows that
the law of excluded middle is not derivable. If we take IPL with one propositional
variable, the law of excluded middle would give us that · ⊢ X ∨¬X, and therefore we
would have either cdot ⊢ X or · ⊢ ¬X. But in IPL, · ⊢ X is not provable because by
the soundness theorem we can construct a model in booleans where X is interpreted
as 0 and · ⊢ ¬X is also not provable because we can construct a boolean model where
X is interpreted as 1.

2 Simple Type Theory

The system we will use that gives us a notion of when two proofs are equal is called
Simple Type Theory.

In simple type theory, instead of considering the theorem like Γ ⊢ A in IPL, we
have a new judgement Γ ⊢ M : A where Γ is context, M is called term or program,
A is called a type, the analogue of a proposition in IPL.

In the context, there exists a finite list of variables with type like [x1 : A1, x2 :
A2, · · · ]. The basic assumption for variable is that the variables with different names
are different variables. The rule of variable is given below,

x : A ∈ Γ
Var

Γ ⊢ x : A

This has the same structure as the assumption rule in IPL, but now we keep track of
which assumption we used by referring to it by name x.

We then provide rules in simple type theory. The conjunction A∧B becomes the
type of ordered pairs, which we write as A×B,

Γ ⊢ M : A Γ ⊢ N : B ×I
Γ ⊢ (M,N) : A×B

The notation for conjunction is not a meet ∧ but a Cartesian product ×, which
emphasis that the A×A is different from A whereas in a poset, a∧a = a. The (M,N)
is a pair, which is constructor of term. Again, there are two elimination rules,

EECS 598: Category Theory PS 1



Problem 2 3

Γ ⊢ M : A1 × A2 ×E1
Γ ⊢ π1M : A1

Γ ⊢ M : A1 × A2 ×E2
Γ ⊢ π2M : A2

The πi is an constructor called projection that eliminates the term. We have a
new judgement called equations of form Γ ⊢ M = N : A which is a judgement for
whether the proof equals. These rules give a way to ”run” the program or simplify
the terms. Since this is an equality, there are three rules for equivalent relation,

Γ ⊢ M : A
refl

Γ ⊢ M = M : A

Γ ⊢ N = M : A
sym

Γ ⊢ M = N : A

Γ ⊢ M = N : A Γ ⊢ N = P : A
trans

Γ ⊢ M = P : A

Additionally, for every new term constructor, we add a corresponding congruence
rule. For instance for the product introduction and elimination rules,

Γ ⊢ M1 = M ′
1 : A1 Γ ⊢ M2 = M ′

2 : A2 ×I cong
Γ ⊢ (M1,M2) = (M ′

1,M
′
2) : A1 × A2

Γ ⊢ M = N : A1 × A2 ×E1 cong
Γ ⊢ π1M = π1N : A1

Γ ⊢ M = N : A1 × A2 ×E2 cong
Γ ⊢ π2M = π2N : A1

Now that we care additionally about equality between terms, we have that ev-
ery connective comes with introduction and elimination rules but also equality rules
called β and η rules. The β-rules are a kind of computation rule to simplify the
program. The β rule says if we apply an elimination rule after an introduction rule,
the term simplifies away the intermediate step and we get out what we put in in the
introduction rule. So for pairs, if we construct a pair (M1,M2) and then we do a
projection, we get out the corresponding field of the pair:

Γ ⊢ M1 : A1 Γ ⊢ M2 : A2 ×β1
Γ ⊢ π1(M1,M2) = M1 : A1

Γ ⊢ M1 : A1 Γ ⊢ M2 : A2 ×β2
Γ ⊢ π2(M1,M2) = M2 : A2

The other rule is called the η-rule which can be thought of as a rule for extensional
reasoning about equality between terms that have the type. One way to formulate
them is that they say that any term of the type A × B can be reconstructed as
an introduction rule after the elimination rules. For conjunction, the rules are give
below,

Γ ⊢ M : A1 × A2 ×η
Γ ⊢ M = (π1M,π2M) : A1 × A2

This says that any pair M : A1 × A2 is equal to one re-constructed using the intro-
duction rule.

An alternative, equivalent way to phrase the η rule is to say that two terms
M,N : A×B are equal if they are equal when using each of the elimination forms.

Γ ⊢ M : A1 × A2 Γ ⊢ N : A1 × A2 Γ ⊢ π1M = π1N : A1 Γ ⊢ π2M = π2N : A2 ×η′
Γ ⊢ M = N : A1 × A2

We can compare the IPL and this simple type theory shown in the table.

EECS 598: Category Theory PS 1



Problem 2 4

IPL Simple Type Theory
A proposition A type

D
Γ ⊢ A

proof
D

Γ ⊢ M : A
program

- Γ ⊢ M = N : A equation

Γ: a sequence of prop Γ: a sequence of form x : A

We then consider the ⊤ and ⊥ in our system.

1I
Γ ⊢ () : 1

The () is considered as a tuple of zero elements. And 1 is the ⊤ in IPL which indicates
the identity of multiplication. There is no β-rule since no elimination exists. For η-
rule,

Γ ⊢ M : 1
1η

Γ ⊢ M = () : 1

or in the alternative form

Γ ⊢ M : 1Γ ⊢ N : 1
1η′

Γ ⊢ M = N : 1

Similarly, for ⊥, we use 0 to mean the empty type, and to indicate the identity of
addition. There are no introduction forms as it is the empty type. The elimination
rule and η-rule is given below.

Γ ⊢ M : 0
0E

Γ ⊢ case M{} : C

The elimination rule is a case-split on the possible introduction forms. For 0 there
are no introduction forms, so we provide no cases. We also add a corresponding
congruence rule:

Γ ⊢ M = N : 0
0Econg

Γ ⊢ case M{} = case N{0} : C

The η principle is slightly different than the ones for 1,×. Rather than being
about terms of type 0, it is about terms that have a free variable of type 0. It says
that any term that has a free variable x : 0 is equivalent to one that immediately case
splits on x.

x : 0 ∈ Γ Γ ⊢ M : C
0η

Γ ⊢ M = case x{} : C

x : 0 ∈ Γ Γ ⊢ M : C
0η

Γ ⊢ M = case x{} : C

EECS 598: Category Theory PS 1



Problem 2 5

Alternatively, we can say that any two terms that have a free variable x : 0 are
equal:

x : 0 ∈ Γ Γ ⊢ M : C Γ ⊢ N : C
0η′

Γ ⊢ M = N : C

From a programming/optimization perspective this is simply saying that any two
programs are equivalent if they are dead code (i.e., never run).

For disjunction A∨B we instead have the type A+B which we can think of as a
type whose elements are an enumerated datatype with two cases: we have a tag bit,
which is either 0 and we additionally have an A or the tag bit is 1 and we have a B.
We write this tagging as either i1M or i2M

Γ ⊢ M : A1
+I1

Γ ⊢ i1M : A1 + A2

Γ ⊢ M : A2
+I2

Γ ⊢ i2M : A1 + A2

Then the elimination form is pattern matching against the tag:

Γ ⊢ M : A1 + A2 Γ, x1 : A1 ⊢ N1 : C Γ, x2 : A2 ⊢ N2 : C
+E

Γ ⊢ case M{i1x1 → N1|i2x2 → N2} : C

Then we need congruence rules for each of these as well:

Γ ⊢ M = N : A1
+I1cong

Γ ⊢ i1M = i1N : A1 + A2

Γ ⊢ M : A2
+I2cong

Γ ⊢ i2M = i2N : A1 + A2

Γ ⊢ M = M ′ : A1 + A2 Γ, x1 : A1 ⊢ N1 = N ′
1 : C Γ, x2 : A2 ⊢ N2 = N ′

2 : C
+Econg

Γ ⊢ case M{i1x1 → N1|i2x2 → N2} = case M ′{i1x1 → N ′
1|i2x2 → N ′

2} : C

The β-rule and η-rule for case constructor are given below. The N1[M/x1] is a
notation for replacing all the occurrence of x1 in N1 into M . One may give a formal
definition of it recursively.

+β1
Γ ⊢ case i1M{i1x1 → N1|i2x2 → N2} = N1[M/x1]

+β2
Γ ⊢ case i2M{i1x1 → N1|i2x2 → N2} = N2[M/x2]

x : A1 + A2 ∈ Γ Γ ⊢ M : C
+η

Γ ⊢ M = case x{i1x1 → M [i1x1/x]|i2x2 → M [i2x2/x]} : C

x : A1 + A2 ∈ Γ Γ ⊢ M : C Γ ⊢ N : C
Γ, x1 : A1 ⊢ M [i1x1/x] = N [i1x1/x] : C

Γ, x2 : A2 ⊢ M [i2x2/x] = N [i2x2/x] : C
+η′

Γ ⊢ M = N : C

For implication, we introduce a new notation λx : A.M which is like a function
of x : A and M is the function body. The A is the type of x which can be omitted if
the context makes the type clear. The notation for implication is =⇒ .

EECS 598: Category Theory PS 1



Problem 3 6

Γ, x : A ⊢ M : B
=⇒ I

Γ ⊢ λx : A.M : A =⇒ B

Then the elimination form is applying the function M : A =⇒ B to an input
N : A gives us a term MN : B. So the logical notion of modus ponens is generalized
to the mathematical notion of function application.

Γ ⊢ M : A =⇒ B Γ ⊢ N : A
=⇒ E

Γ ⊢ MN : B

These come with corresponding congruence rules

Γ, x : A ⊢ M = N : B
=⇒ Icong

Γ ⊢ (λx : A.M) = (λx : A.N) : A =⇒ B

Γ ⊢ M = M ′ : A =⇒ B Γ ⊢ N = N ′ : A
=⇒ Econg

Γ ⊢ MN = M ′N ′ : B

The β rule says that applying a λ-function to a term is equivalent to evaluating
the body of the function with the input substituted for all the occurrences of the
variable x.

Γ, x : A ⊢ M : B Γ ⊢ N : A
=⇒ β

Γ ⊢ (λx : M)N = M [N/x] : B

The η rules says that every function is equivalent to a lambda function that passes
the input to it.

Γ ⊢ M : A =⇒ B
=⇒ η

Γ ⊢ M = (λx : Mx) : A =⇒ B

The alternative lambda rule says that to prove two functions

Γ ⊢ M : A =⇒ B Γ ⊢ N : A =⇒ B Γ, x : A ⊢ Mx = Nx : B
=⇒ η′

Γ ⊢ M = N : A =⇒ B

Here, the function application is left associative, hence, M x1 x2 = (M x1) x2.
Therefore, we usually don’t write parenthesis.

3 Example

Let us consider · ⊢ ⊤ ∨⊤ again. In simple type theory, the theorem is · ⊢ M : 1 + 1.
The three proves given before become,

1I
· ⊢ () : 1

+I1
· ⊢ i1() : 1 + 1

1I
· ⊢ () : 1

+I2
· ⊢ i2() : 1 + 1

1I
· ⊢ () : 1

1I
· ⊢ () : 1

×I
· ⊢ ((), ()) : 1 + 1

×E1
· ⊢ π1((), ()) : 1

+I1
· ⊢ i1(π1((), ())) : 1 + 1

EECS 598: Category Theory PS 1



Problem 4 7

Now we have a formal sense in which the first and the third proofs are the same:
their corresponding terms are equal in our equational theory: · ⊢ i1(π1((), ())) = i1() :
1 + 1. Two proofs are given below,

...

· ⊢ π1((), ()) : 1
1η

· ⊢ π1((), ()) = () : 1
i1 cong

· ⊢ i1(π1((), ())) = i1() : 1 + 1

1I
· ⊢ () : 1

1I
· ⊢ () : 1

×β1
· ⊢ π1((), ()) = () : 1

i1 cong
· ⊢ i1(π1((), ())) = i1() : 1 + 1

We can then reformulate a stronger version of the disjunction property for STT:
given any term · ⊢ M : 1 + 1, either · ⊢ i1() = M : 1 or · ⊢ i2() = M : 11.
Again, non-empty context doesn’t guarantee it. For example, if M has a free variable
x : 1 + 1, i.e., x : 1 + 1 ⊢ M : 1 + 1 then it is not necessarily the case that M =
i1() or M = i2(). It is possible that M = x, i.e., the identity function or M =
case x{i1x1 → i2()|i2x2 → i1()}, which is the negation of booleans.

4 Takeaway Questions

In this system, there are at least two important questions:

• Consistency of the equational theory. Given · ⊢ i1() : 1 + 1 and · ⊢ i2() : 1 + 1,
is can we show that · ⊢ i1() = i2() : 1 + 1 is not provable?

This is a reasonable analog of the consistency theorem for IPL (no proof of ⊥),
because if it were the case that i1() = i2(), then any two programs would be
equal:

M = case i1(){i1x1 → M |i2x2 → N} (+β1)

= case i2(){i1x1 → M |i2x2 → N} (+β2)

= N

• Canonicity. Given · ⊢ M : 1 + 1, can we get either · ⊢ M = i1() : 1 + 1
or · ⊢ M = i2() : 1 + 1? More generally, given · ⊢ M : A + B can we find
that either there is an M1 such that · ⊢ M = i1M1 : A + B or an M2 with
· ⊢ M = i2M2 : A+B?

1in fact we need only β rules not η rules to prove this

EECS 598: Category Theory PS 1


