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Our main goal for this lecture is to provide a set-theoretic semantics for Simple
Type Theory (STT) and to prove that this semantic interpretation is sound. As a
corollary, we obtain the consistency of STT’s theory of equality of terms.

We will define the set-theoretic semantics of STT in several stages. First, we
inductively define the denotation of a type. The denotation of a type will be a set.
To give a denotation to base types X ∈ Σ0, we require an assignment σ0 : Σ0 → Set
which maps each base type to some set. We define:

J1K := {∗} (The singleton set)

J0K := ∅ (The empty set)

JA×BK := JAK × JBK (The Cartesian product)

JA+BK := JAK ⊎ JBK = ({1} × JAK) ∪ ({2} × JBK) (The disjoint union)

JA ⇒ BK := JBKJAK (The set of functions from JAK to JBK)
JXK := σ0(X) (For X a base type)

Next, we define the denotation of a context Γ. Let Γ = x1 : A1, ..., xn : An. We
define:

JΓK :=
n∏

i=1

JAiK

As a special case, J·K = {∗}, as the empty product of sets is the singleton set. An
element γ̃ ∈ JΓK is a tuple of n elements whose i-th element belongs to the set JAiK.
We can think of γ̃ as an assignment of variables so that each xi is mapped to a
member of the corresponding set JAiK. We use the notation γ̃(xi) ∈ JAiK to refer to
the i-th member of the tuple γ̃. We refer to γ̃ as a semantic substitution, in contrast
to the syntactic substitution γ : ∆ → Γ defined in PS2.

We now define the denotation of a termM , again by induction. For any judgement
Γ ⊢ M : A, we will give a corresponding denotation JMK : JΓK → JAK. (Formally we
should write this as JMKΓ, but these are usually clear from context). Since JMK will
be a function operating on semantic substitutions γ̃ ∈ JΓK, it suffices to define the
action of JMK on each γ̃.

For Γ ⊢ x : A, we define
JxK(γ̃) := γ̃(x)
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By assumption x : A ∈ Γ, and hence γ̃(x) ∈ JAK. To give a denotation to terms
involving application of a function symbol, we require an assignment σ1 which maps
each function symbol (f : A1, ..., An → B) ∈ Σ1 to a function σ1(f) : (

∏n
i=1JAiK) →

JBK. For Γ ⊢ f(M1, ...,Mn) : B, we define

Jf(M1, ...,Mn)K(γ̃) := (σ1(f))(JM1K(γ̃), ..., JMnK(γ̃))

By assumption each JMiK(γ̃) ∈ Ai, and so we can apply the function
σ1(f) : (

∏n
i=1JAiK) → JBK to obtain a member of JBK.

For Γ ⊢ () : 1, we define

J()K(γ̃) := ∗ ∈ {∗} = J1K

For Γ ⊢ case0M{} : A, we claim that JΓK = ∅, and hence we define

Jcase0M{}K := (∗ : ∅ → JAK)

This may seem strange, but recall that in set theory there is exactly one function
from ∅ to any given set S; the set of functions from ∅ to S is S∅ = {∗}, the singleton
set. So we just need to show that JΓK = ∅. By assumption, we have JMK : JΓK → J0K,
so JMK : JΓK → ∅. If S is a nonempty set, then there exist no functions from S to ∅,
so we must have JΓK = ∅.

For Γ ⊢ (M1,M2) : A1 × A2, we define

J(M1,M2)K(γ̃) := (JM1K(γ̃), JM2K(γ̃))

By assumption, JM1K : JΓK → JA1K and JM2K : JΓK → JA2K. Hence (JM1K(γ̃), JM2K(γ̃)) ∈
JA1K × JA2K = JA1 × A2K.

For Γ ⊢ πiN : Ai, i ∈ {1, 2}, we define

JπiNK(γ̃) := πi(JNK(γ̃))

By assumption, JNK : JΓK → (JA1 × A2K = JA1K × JA2K), so the output JNK(γ̃) is an
ordered pair whose i-th component lies in JAiK.

For Γ ⊢ λx.M : A ⇒ B, we wish to give Jλx.MK(γ̃) ∈ (JA ⇒ BK = JBKJAK). So
we should have Jλx.MK(γ̃) : JAK → JBK. It thus suffices to define how Jλx.MK(γ̃)
acts on each x̃ ∈ JAK. We define

(Jλx.MK(γ̃))(x̃) := JMK(γ̃, x̃/x)

Here the notation (γ̃, x̃/x) means extending the assignment γ̃ to take one additional
input, x, and map it to x̃ ∈ JAK. Thus we have (γ̃, x̃/x) ∈ JΓK× JAK = JΓ, x : AK. By
assumption, JMK : JΓ, x : AK → JBK, and hence JMK(γ̃, x̃/x) ∈ JBK, as desired.

For Γ ⊢ M N : B, we define

JMNK(γ̃) := (JMK(γ̃))(JNK(γ̃))

By assumption, we have JNK : JΓK → JAK, so JNK(γ̃) ∈ JAK. Also by assumption, we
have
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JMK : JΓK → (JA ⇒ BK = JBKJAK). Thus we have JMK(γ̃) : JAK → JBK. Thus
(JMK(γ̃))(JNK(γ̃)) ∈ JBK, as desired.

For Γ ⊢ ijMj : A1 + A2, j ∈ {1, 2}, we define

JijMjK(γ̃) := (j, JMjK(γ̃))

By assumption, JMjK : JΓK → JAjK, so (j, JMjK(γ̃)) ∈ {j} × JAjK ⊆ ({1} × JA1K) ∪
({2} × JA2K) = JA1K ⊎ JA2K = JA1 + A2K.

For Γ ⊢ case+M{i1x1 → N1|i2x2 → N2} : B, we define

Jcase+M{i1x1 → N1|i2x2 → N2}K(γ̃) :=

{
JN1K(γ̃, π2(JMK(γ̃))/x1), π1(JMK(γ̃)) = 1

JN2K(γ̃, π2(JMK(γ̃))/x2), π1(JMK(γ̃)) = 2

By assumption, JMK : JΓK → (JA1 + A2K = JA1K ⊎ JA2K). So JMK(γ̃) ∈ JA1K ⊎ JA2K.
This means π1(JMK(γ̃)) is either 1 or 2. Let j = π1(JMK(γ̃)) ∈ {1, 2}. Then
π2(JMK(γ̃)) ∈ JAjK. So (γ̃, π2(JMK(γ̃))/xj) ∈ JΓK × JAjK = JΓ, xj : AjK. By as-
sumption, JNjK : JΓ, xj : AjK → JBK. So JNjK(γ̃, π2(JMK(γ̃))/xj) ∈ JBK, as desired.

This completes the inductive definition of denotation of terms JMK:

Theorem 1 (Well-definedness of denotations). If Γ ⊢ M : A then JMKΓ : JΓK → JAK

As a corollary of this, we obtain one part of the consistency of STT as a logic:

Corollary 1. There is no M such that · ⊢ M : 0.

Proof. If · ⊢ M : 0, then JMK : J·K → J0K, i.e., JMK : {∗} → ∅, but there is no such
function.

Our next step will be to prove the compositionality theorem, which will be an
important lemma used in our proof of soundness. This will rely on the notion of
syntactic substitution defined in PS2.

For a syntactic substitution γ : ∆ → Γ, we define the denotation JγK : J∆K → JΓK.
JγK takes a semantic substitution δ̃ ∈ J∆K and maps it to a semantic substitution
JγK(δ̃) ∈ JΓK. To define the output JγK(δ̃) ∈ JΓK, we define how it maps each xi : Ai ∈
Γ to a member of JAiK. We define:

(JγK(δ̃))(xi) := Jγ(xi)K(δ̃)

By the definition of syntactic substitution, for each xi : Ai ∈ Γ we have ∆ ⊢ γ(x) : Ai,
so we have Jγ(x)K : J∆K → JAiK. Thus Jγ(x)K(δ̃) ∈ JAiK, as desired.

We can now state the compositionality theorem. We know from PS2 that whenever
Γ ⊢ M : B, we have ∆ ⊢ M [γ] : B. We thus have JγK : J∆K → JΓK, JMK : JΓK → JBK,
and JM [γ]K : J∆K → JBK.

Lemma 1 (Compositionality of the Set-theoretic Semantics). If Γ ⊢ M : A and
γ : ∆ → Γ, then

JM [γ]K∆ = JMKΓ ◦ JγK∆

I.e., for any δ̃ ∈ J∆K, JM [γ]K(δ̃) = JMK(JγK(δ̃)).
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As a special case, when Γ ⊢ N : A and Γ, x : A ⊢ M : B then we have the
substitution (idΓ, N/x) : Γ → Γ, x : A. We have M [N/x] = M [(idΓ, N/x)]. Note that
J(idΓ, N/x)K(γ̃) = (γ̃, JNK(γ̃)/x). (you can check this). Thus, applying composition-
ality here gives:

JM [N/x]K(γ̃) = JMK(γ̃, JNK(γ̃)/x)
We prove compositionality by induction on M .

• If M = x is a variable:

Jx[γ]K(δ̃) = Jγ(x)K(δ̃)

= (JγK(δ̃))(x)

= JxK(JγK(δ̃))

• If M = f(M1, ...,Mn) is an application of a function symbol:

Jf(M1, ...,Mn)[γ]K(δ̃) = Jf(M1[γ], ...,Mn[γ])K(δ̃)

= (σ1(f))(JM1[γ]K(δ̃), ..., JMn[γ]K(δ̃))

= (σ1(f))(JM1K(JγK(δ̃)), ..., JMnK(JγK(δ̃)))
(by inductive hypothesis)

= Jf(M1, ...,Mn)K(JγK(δ̃))

• If M = ():

J()[γ]K(δ̃) = J()K(δ̃)
= ∗
= J()K(JγK(δ̃))

• If M = case0N{}: As above, we know J∆K = ∅, and any two functions f, g :
∅ → JBK are equal. (We have f = ∗ = g.) We have both JM [γ]K : ∅ → JBK and
JMK ◦ JγK : ∅ → JBK, so the result follows.

• If M = (M1,M2) is a pair:

J(M1,M2)[γ]K(δ̃) = J(M1[γ],M2[γ])K(δ̃)

= (JM1[γ]K(δ̃), JM2[γ]K(δ̃))

= (JM1K(JγK(δ̃)), JM2K(JγK(δ̃))) (ind. hyp.)

= J(M1,M2)K(JγK(δ̃))

• If M = πiN is a projection:

J(πiN)[γ]K(δ̃) = Jπi(N [γ])K(δ̃)

= πi(JN [γ]K(δ̃))

= πi(JNK(JγK(δ̃)) (ind. hyp.)

= JπiNK(JγK(δ̃))
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• The case of λx.M is interesting. This case is the reason we use multi-variable
substitutions γ in the statement of the theorem: the weaker inductive statement
with single-variable substitutions is less straightforward to prove in this case.

We have J(λx.M)[γ]K(δ̃) = Jλx.(M [γ, x/x])K(δ̃). This and Jλx.MK(JγKδ̃) are
both functions JAK → JBK, so it suffices to show they act the same on each
x̃ ∈ JAK.

(Jλx.(M [γ, x/x])K(δ̃))(x̃) = JM [γ, x/x]K(δ̃, x̃/x)

= JMK(Jγ, x/xK(δ̃, x̃/x)) (ind. hyp.)

On the other hand, (Jλx.MK(JγKδ̃))(x̃) = JMK(JγKδ̃, x̃/x). So we need only
show Jγ, x/xK(δ̃, x̃/x) = (JγKδ̃, x̃/x). To do this, we show they act the same on
each yi : Ci ∈ (Γ, x : A). We have:

(Jγ, x/xK(δ̃, x̃/x))(x) = J(γ, x/x)(x)K(δ̃, x̃/x)

= JxK(δ̃, x̃/x)

= (δ̃, x̃/x)(x)

= x̃

Likewise, (JγKδ̃, x̃/x)(x) = x̃. Finally, for any yi : Ci ∈ Γ (so yi ̸= x), we have
(Jγ, x/xK(δ̃, x̃/x))(yi) = J(γ, x/x)(yi)K(δ̃, x̃/x) = Jγ(yi)K(δ̃, x̃/x). On the other
hand, (JγKδ̃, x̃/x)(yi) = (JγKδ̃)(yi) = Jγ(yi)K(δ̃).
So we need to show that Jγ(yi)K(δ̃, x̃/x) = Jγ(yi)K(δ̃) . Here it is useful to use
the annotations, what we need to show is:

Jγ(yi)K∆,x:A(δ̃, x̃/x) = Jγ(yi)K∆(δ̃)

where γ : ∆ → Γ and y : B ∈ Γ. So on the left hand side, γ(y) is implicitly
weakened, but they are interpreted as functions with different domains. Intu-
itively equation is valid since γ(y) doesn’t use the variable x. Formally, we need
to prove it as a lemma.

• The other cases are similar to the previous. Most complex is the + elimination
case, which is similar to λ since it involves variable binding.

Lemma 2 (Weakening). If ∆′ contains every variable in ∆, and ∆′ ⊢ M : A, then

JMK∆
′
δ̃′ = JMK∆(δ̃′|∆)

where δ̃′|∆ is the restriction of the tuple δ̃′ to only the fields which are variables in ∆.

Proof. By induction on M . Similar to the compositionality proof. Most interesting
is the λ case: If M = λx.N , then

Jλx.NK∆
′
(δ̃′)(x̃)

= JNK∆
′,x:A(δ̃′, x̃/x)

= JNK∆,x:A(δ̃′|∆, x̃/x) (ind. hyp.)

= Jλx.NK∆,x:A(δ̃′|∆)(x̃)
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Armed with the compositionality theorem, we’re ready to prove the soundness of
our model of the equational theory of STT.

Theorem 2 (Soundness of Equational Theory for Set-theoretic Semantics). Suppose
that for all (Γ,M,N,A) ∈ Σ2 we have JMK = JNK. Then whenever Γ ⊢ M = N : A,
we have JMK = JNK.

Proof. As usual, we proceed by induction on the proof that Γ ⊢ M = N : A.

• The cases of the reflexive, symmetric, and transitive deduction rules follow
immediately from the reflexive, symmetric, and transitive properties of set-
theoretic equality.

• The case of axioms ∈ Σ2 holds by assumption.

• The cases of the congruence rules all follow from the substitution property of
set-theoretic equality. (Note that SubstCong requires an application of compo-
sitionality.) For example, the case of × I Cong:

Suppose (M,N) = (M ′, N ′) by × I Cong. We know that M = M ′ and N = N ′.
By inductive hypothesis, JMK = JM ′K and JNK = JN ′K. So

J(M,N)K(γ̃) = (JMK(γ̃), JNK(γ̃))
= (JM ′K(γ̃), JN ′K(γ̃))
= J(M ′, N ′)K(γ̃)

hence J(M,N)K = J(M ′, N ′)K.

• The case of ⇒ β: We know Γ, x : A ⊢ M : B and Γ ⊢ N : A. We conclude
(λx.M) N = M [N/x]. We have: J(λx.M) NK(γ̃) = (Jλx.MK(γ̃))(JNK(γ̃)) =
JMK(γ̃, JNK(γ̃)/x) By compositionality, this = JM [N/x]K(γ̃).

• The case of ⇒ η: We know Γ ⊢ M : A ⇒ B. We conclude Γ ⊢ M =
λx.(M x) : A ⇒ B. We have: Jλx.(M x)K(γ̃) = (x̃ 7→ JM xK(γ̃, x̃/x)) = (x̃ 7→
(JMK(γ̃, x̃/x))(JxK(γ̃, x̃/x))) = (x̃ 7→ (JMK(γ̃, x̃/x))(x̃)) = (x̃ 7→ (JMK(γ̃))(x̃)) =
JMK(γ̃).

TODO: I think this is another application of that same lemma.

• The remaining β and η rules are left as an exercise.

As a corollary of soundness, we see it is impossible to prove i1() = i2() in STT,
hence the theory of equality is consistent.

Corollary 2. · ⊢ i1() = i2() : 1 + 1 is not provable in STT with no axioms.
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Proof. If i1() = i2() is provable, then by the soundness of the equational theory
Ji1()K = Ji2()K, but

Ji1()K(∗) = (1, ∗) ̸= (2, ∗) = Ji2()K(∗)

But there are more models of STT beyond this intuitive set-theoretic one. To
describe them, we need to learn... Category Theory!

Definition 1. A category C consists of:

1. C0, a set of objects

2. For each a, b ∈ C0, a set C1(a, b) of arrows (aka morphisms) from a to b. For
f ∈ C1(a, b) when the category is clear from context, we write f : a → b.

3. For each a ∈ C0 a distinguished identity morphism ida ∈ C1(a, a).

4. For each a, b, c ∈ C0, a composition operation ◦ : (C1(b, c)× C1(a, b)) → C1(a, c)

5. Composition respects the identity morphisms: for any f : a → b, we have

idb ◦ f = f

and
f ◦ ida = f

6. Composition is associative: wherever the composition is defined, we have f ◦
(g ◦ h) = (f ◦ g) ◦ h.

There are foundational issues with formalizing category theory in terms of set
theory. We wish to have a “category of all sets”, but then its set of objects would need
to be a set containing all sets... this is problematic. Instead, we consider a category
of all “small” sets, and this is good enough for any practical purposes. There are a
lot of neat foundational things happening here, but they won’t be focused on in this
course.

We can view any preorder (X,≤) as a category. The objects in our category are
the elements of the preorder’s underlying set, and we have a single morphism ∗ : a → b
exactly when a ≤ b. The reflexivity of ≤ ensures the existence of identity morphisms,
and the transitivity of ≤ ensures that we can define a composition operation. The fact
that composition respects the identity morphisms and is associative is clear because
for any given source and target there is at most one possible morphism, so any two
morphisms with the same source and target must be equal.

In this way, category theory generalizes order theory in the same way that simple
type theory generalizes IPL. In order theory we only care if x ≤ y holds, but in
category theory we care about which morphism we have in C1(a, b). Similarly in IPL
we only care if Γ ⊢ A is provable, but in STT we care about which program we have
Γ ⊢ M : A
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