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1 Exponential

1.1 Definition

Let C has binary products. An exponential of a, b ∈ C0 is

1. An object e ∈ C0 and

2. A morphism app : e × a → b such that for any f : v × a → b, ∃!λf : v → e so
that the following diagram commutes.

e× a b

v × a

f

app

(λf◦π1,π2)

One may make an analogy to the Heyting implication e between a and b where
e ∧ a ≤ b and for any x ∧ a ≤ b, x ≤ e.

1.2 Uniqueness of Exponential

Consider two exponential objects (e, app, λ) and (e′, app′, λ′) of a and b. Then e and
e′ are isomorphic with the morphisms being λapp′ : e′ → e and λ′app : e → e′. By
symmetry it suffices to show that λapp′ ◦ λ′app = ide : e → e.

To prove this it is sufficient to show that picking either of g = λapp′ ◦ λ′app or
g = ide makes the following diagram commute:

e× a

e× a b

app

app

(g◦π1,π2)
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First, to show that ide makes the diagram commute, it is sufficient to show that
(ide ◦ π1, π2) = ide×a. To prove this, it is sufficient by the universal property of the
product to show that

π1 ◦ (ide ◦ π1, π2) = π1 ◦ ide

and
π2 ◦ (ide ◦ π1, π2) = π2 ◦ ide

Which follows by definition of the pairing (−,=) operation.
Next, we need to show that

app ◦ (λapp′ ◦ λ′app ◦ π1, π2) = app

app ◦ (λapp′ ◦ λ′app ◦ π1, π2) = app ◦ (λapp′ ◦ π1, π2) ◦ (λ′app ◦ π1, π2) (see below)

= app′ ◦ (λ′app ◦ π1, π2) (property of λapp′)

= app (property of λ′app)

= app ◦ ide

Besides the unjustified first step, this argument is neatly described by the following
diagram:

e× a

e′ × a b

e× a

app

app′

(λapp◦π1,π2)

(λapp′◦π1,π2)
app

It remains to to show that

(λapp′ ◦ λ′app ◦ π1, π2) = (λapp′ ◦ π1, π2) ◦ (λ′app ◦ π1, π2) : e× a → e× a

By the universal property of a product it suffices to show they are equal when applying
π1 and π2. First,

π1 ◦ (λapp′ ◦ λ′app ◦ π1, π2) = λapp′ ◦ λ′app ◦ π1

= λapp′ ◦ π1 ◦ (λ′app ◦ π1, π2)

= π1 ◦ (λapp′ ◦ π1, π2) ◦ (λ′app ◦ π1, π2)

the last two steps are described in the diagram:

e× a e

e′ × a e′

e× a e

(λapp′◦π1,π2)

(λ′app◦π1,π2)

π1

π1

λ′app

λapp′

π1
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Next,

π2 ◦ (λapp′ ◦ λ′app ◦ π1, π2) = π2

= π2 ◦ (λ′app ◦ π1, π2)

= π2 ◦ (λapp′ ◦ π1, π2) ◦ (λ′app ◦ π1, π2)

where the last two steps are described in the diagram:

e× a

e′ × a a

e× a

(λapp′◦π1,π2)

(λ′app◦π1,π2)

π2

π2

π2

Therefore, the exponential object is unique up to isomorphism. Additionally it is
unique up to unique isomorphism i : e → e′ satisfying app ◦ (i ◦ π1, π2) = app′, since
this is the unique morphism satisfying the property at all.

1.3 Examples

• In Set, the exponential of set A and B is the set of functions BA = {f : A → b}.

• In Gph, the exponential HG of graphs G and H can be constructed as(
HG

)
v
= HGv

v(
HG

)
e
(f, g) =

∏
v∈Gv

He(f(v), g(v))

• In Mon, there is no general exponential.

1.4 Free Monoid

For any A ∈ Set, we have ListA ∈ Mon defined as the lists of elements in A with
concatenation operation. This monoid is called the free monoid over A because it
satisfies the following property:

1. A morphism single : A → |ListA| that maps a ∈ A to a singleton list (a) and

2. For any f : A → |M |, ∃!f̄ : Mon(ListA,M),such that f = single ◦ |f̄ |.

By a similar argument if we had a different monoid L′ with function s : A → L′

such that for any f : A → |M |.∃!f̄ ′ : Mon(L′,M) satisfying f = s◦|f̄ ′|, then we would
be able to show that ListA is unique up to unique s/single-preserving isomorphism
single

′

EECS 598: Category Theory Note 10



Problem 2 4

2 Predicators

2.1 Meet and Down Set

For S ⊆ |P |, the meet m of S is the greatest lower bound of S, that is,

1. m is a lower bound for S in that ∀x ∈ S,m ≤ x

2. m is greater than any other lower bound: ∀y, (∀x ∈ S, y ≤ x) ⇒ y ≤ m

Define the down set of S as

↓S := {p ∈ |P | : ∀x ∈ S, p ≤ x}

Then we can equivalently define thatm is the meet of S when it is the greatest element
of ↓ S:

1. First, m is an element of ↓ S: m ∈↓S

2. Next, it is the greatest element: x ∈↓S ⇒ x ≤ m

↓S has the property of being downward-closed : ∀x ∈↓S, y ≤ x ⇒ y ∈↓S.
Then we are able to describe all of our connectives in IPL by saying that they are

greatest elements of some downward closed set:

• A top element ⊤ is the greatest element of the entire set |P | (trivially downward
closed).

• A binary meet x∧ y is the greatest element of the downward closed set of lower
bounds of x and y: {z|z ≤ x ∧ z ≤ y}

• A Heyting implication x ⇒ y is the greatest element of the downward closed
set {z|z ∧ x ≤ y}

Or, dually, that they are least elements of an upward closed set:

• A bottom element ⊥ is the least element of all of |P |.

• A join x ∨ y is the least element of {z|x ≤ z ∧ y ≤ z}

2.2 Predicator

Now we will develop a generalization of downward-closed sets that will allow us to
unify all of the different universal properties we’ve seen so far in the same way that
downward-closed sets generalized all connectives in IPL.

We call this notion a predicator 1 on the category. We call them predicators as
they generalize predicates in a similar way that functors generalize functions.

A predicator P on a category C consists of

1these are more commonly called presheaves but then you’d ask what a sheaf is, which won’t be
relevant until maybe the last week of the course.
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1. ∀a ∈ C , a set P (a)

2. An operation ∗ab : P (b)× C (a, b) → P (a) which satisfies

φ ∗ idb = φ

φ ∗ (f ◦ g) = (φ ∗ f) ∗ g

We think of ∗ here as a kind of “composition” operation between elements of the sets
P (b) and real morphisms f ∈ C (a, b). Then the algebraic identities that we ask to be
satisfied are the two of the three category axioms that make sense for the ∗ operation.

To get a feel for predicators, we consider our two extreme special cases: one-object
categories, i.e., monoids, and thin categories, i.e., preorders.

If C has one object ·, or equivalently, C (·, ·) is a monoid with neutral element e
and multiplication ⊗, a predicator would be just a single operation ∗ : P (·)×C (·, ·) →
C (·, ·) satisfying

φ ∗ e = φ

φ ∗ (f ⊗ g) = (φ ∗ f) ∗ g

In this case, the predicator P is precisely an action of monoid C (·, ·) on the set P (·).
If the monoid is a group, this is called a group action. Analogously, a predicator
could be called a category action.

Next consider if C is a thin category, i.e., a preorder and we have a presheaf P
where each set P (a) has at most one element (∀a ∈ C , |P (a)| ≤ 1). Then P is really a
kind of predicate on objects of the set, we can think of the predicate as true if P (a) is
inhabited and false if it is not. Then the ∗ operation means that if P (a) is inhabited
and b ≤ a then P (b) is inhabited. Then we see that such a predicator P determines
to a downward-closed subset of the objects of C .

A predicator P on C is just the same data as P : C op → Set. The action on
objects gives our P (a) and the functorial action is equivalent to the ∗ operation but
in a different order:

P0(a) = P (a)

P1(f : a → b)(φ ∈ P (b)) = φ ∗ f ∈ P (a)

Then the functoriality laws correspond precisely to our rules for predicators:

P1(ida)(ϕ) = idP0(a)(ϕ) = ϕ = ϕ ∗ ida

P1(f ◦ g)(ϕ) = (P1(g) ◦ P1(f))(ϕ) = P1(g)(P1(f)(ϕ)) = P1(g)(ϕ ∗ f) = ϕ ∗ f ∗ g

2.3 STT Terms as a Predicator

In PS2, we have described the category Ctx of context in STT where the objects are
contexts and the morphisms are general substitution. Notice that for any fixed type
A:

1. For any context Γ, the terms on it TermA(Γ) = {M |Γ ⊢ M : A} form a set,
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2. We have an operation of substitution into a term that takes a term M ∈
TermA(Γ) and a substitution γ : ∆ → Γ and gives us

M [γ] ∈ TermA(∆)

3. Furthermore, we shows that this satisfies two equations:

M [idΓ] = M

M [γ ◦ δ] = M [γ][δ]

Therefore, the terms of any fixed type along with action of substitutions form a
predicator on the category of contexts and substitutions.
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