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1 Exponential

1.1 Definition

Let % has binary products. An exponential of a,b € % is
1. An object e € %, and

2. A morphism app : e X a — b such that for any f :v xa — b, AI\f : v — e so
that the following diagram commutes.

app
exa ——=b

()\fo7r1,7r2)]\ ¥
v Xa

One may make an analogy to the Heyting implication e between a and b where
eNa<bandforany xr Aa <b, x<e.

1.2 Uniqueness of Exponential

Consider two exponential objects (e,app, A) and (¢/,app’, \') of @ and b. Then e and
¢/ are isomorphic with the morphisms being Aapp’ : ¢ — e and Napp : e — €. By
symmetry it suffices to show that Aapp’ o Napp =id, : e — e.

To prove this it is sufficient to show that picking either of g = Aapp’ o Napp or
g = id, makes the following diagram commute:

exa
(gom1,m2) e
app
exaq —— b
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First, to show that id. makes the diagram commute, it is sufficient to show that
(ide 0 71, M9) = idex,. To prove this, it is sufficient by the universal property of the
product to show that

71 0 (ide 0 7y, ) = 7 0id,
and
79 0 (ide © 71, M) = o 0 id,

Which follows by definition of the pairing (—, =) operation.
Next, we need to show that

app o (Aapp’ o X'app o my, ) = app

app o (Aapp’ o Napp o 11, m) = app o (Aapp’ o my, 7o) o (Napp o 71, m2) (see below)

= app’ o (Napp o my, ) (property of Aapp’)
= app (property of Napp)
= app o id,

Besides the unjustified first step, this argument is neatly described by the following
diagram:

exa
(Xapp’omy,m2) app

¢ xa —2 3y
(Xappomy,m2) app

exa
It remains to to show that
(Aapp’ o Napp o 1, ™) = (Aapp’ o my, m) o (Nappom,m) e xa—eXa

By the universal property of a product it suffices to show they are equal when applying
m and 7my. First,

71 0 (Aapp’ o Napp o 7, m) = Aapp’ o Napp o m
= app’ o o (Napp o 7y, m2)
= 7 o (Aapp’ o 7y, m2) o (Napp o 7y, 7o)
the last two steps are described in the diagram:
exa ——e
(Aapp’omy,ma )T Tkapp’
e xa——¢

(XN appomy,ma )T TXapp

exXxa ——Ee
1
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Next,

73 0 (Aapp’ o N'app o 1, 2) =
=T20 (Xapp 0 Ty, M)

= 7y 0 (Aapp’ o 71, ) 0 (Napp o 11, o)
where the last two steps are described in the diagram:

eXa

onrrom] SN2

/ 2
e xa——a
(Nappomry,m2 )T T

exXa

Therefore, the exponential object is unique up to isomorphism. Additionally it is
unique up to unique isomorphism i : e — €’ satisfying app o (i o w1, m3) = app/, since
this is the unique morphism satisfying the property at all.

1.3 Examples
e In Set, the exponential of set A and B is the set of functions B4 = {f : A — b}.

e In Gph, the exponential H® of graphs G and H can be constructed as

(HY), = H"
(H), (f.9) = [] He(f ), 9(v))

e In Mon, there is no general exponential.

1.4 Free Monoid

For any A € Set, we have ListA € Mon defined as the lists of elements in A with
concatenation operation. This monoid is called the free monoid over A because it
satisfies the following property:

1. A morphism single : A — |ListA| that maps a € A to a singleton list (a) and
2. For any f: A — |M|, 3'f : Mon(ListA, M),such that f = single o |f].

By a similar argument if we had a different monoid L" with function s : A — L'
such that for any f : A — |M|.3!f" : Mon(L', M) satisfying f = so|f’|, then we would
be able to show that List A is unique up to unique s/single-preserving isomorphism
=
single
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2 Predicators

2.1 Meet and Down Set
For S C |P|, the meet m of S is the greatest lower bound of S, that is,
1. m is a lower bound for S in that Vx € S,m <z
2. m is greater than any other lower bound: Yy, (Vz € S,y <z) =y <m
Define the down set of S as
1S ={pel|P|:VxeSp<uzx}

Then we can equivalently define that m is the meet of S when it is the greatest element
of | S:

1. First, m is an element of | S: m €5
2. Next, it is the greatest element: x €/ = x <m

19 has the property of being downward-closed: Vx €S,y < x =y €lS.
Then we are able to describe all of our connectives in IPL by saying that they are
greatest elements of some downward closed set:

e A top element T is the greatest element of the entire set | P| (trivially downward
closed).

e A binary meet x Ay is the greatest element of the downward closed set of lower
bounds of z and y: {z|z <x Az <y}

e A Heyting implication x = y is the greatest element of the downward closed
set {z|z Az <y}

Or, dually, that they are least elements of an upward closed set:
e A bottom element L is the least element of all of |P|.

e A join z Vy is the least element of {z|z <z Ay < z}

2.2 Predicator

Now we will develop a generalization of downward-closed sets that will allow us to
unify all of the different universal properties we’ve seen so far in the same way that
downward-closed sets generalized all connectives in IPL.

We call this notion a predicator' on the category. We call them predicators as
they generalize predicates in a similar way that functors generalize functions.

A predicator P on a category % consists of

Lthese are more commonly called presheaves but then you'd ask what a sheaf is, which won’t be
relevant until maybe the last week of the course.
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1. Ya € €, a set P(a)

2. An operation *® : P(b) x €(a,b) — P(a) which satisfies

pxidy = ¢
px(fog)=(px[f)xg

We think of % here as a kind of “composition” operation between elements of the sets
P(b) and real morphisms f € €'(a,b). Then the algebraic identities that we ask to be
satisfied are the two of the three category axioms that make sense for the x operation.

To get a feel for predicators, we consider our two extreme special cases: one-object
categories, i.e., monoids, and thin categories, i.e., preorders.

If € has one object -, or equivalently, €(-,+) is a monoid with neutral element e
and multiplication ®, a predicator would be just a single operation * : P(-) x€(+,-) —
€ (-, -) satisfying

pre=ey
px (f@g)=(pxf)xyg
In this case, the predicator P is precisely an action of monoid €(-,-) on the set P(-).
If the monoid is a group, this is called a group action. Analogously, a predicator
could be called a category action.

Next consider if € is a thin category, i.e., a preorder and we have a presheaf P
where each set P(a) has at most one element (Va € €, |P(a)] < 1). Then P is really a
kind of predicate on objects of the set, we can think of the predicate as true if P(a) is
inhabited and false if it is not. Then the % operation means that if P(a) is inhabited
and b < a then P(b) is inhabited. Then we see that such a predicator P determines
to a downward-closed subset of the objects of €.

A predicator P on % is just the same data as P : €°° — Set. The action on
objects gives our P(a) and the functorial action is equivalent to the % operation but
in a different order:

Po(a) = P(a)
Pi(f:a—Db)(p € P(b) =¢x*f € Pla)

Then the functoriality laws correspond precisely to our rules for predicators:

P1(ida) () = idpy(a)(¢) = ¢ = ¢ xid,
Pi(f 0 9)(9) = (Pi(g) o PL(f))(@) = Pr(g)(P1(f) (@) = Pr(g)(@* ) = ¢ [ xg

2.3 STT Terms as a Predicator

In PS2, we have described the category Ctx of context in STT where the objects are
contexts and the morphisms are general substitution. Notice that for any fixed type

A:

1. For any context I, the terms on it Terma(I') = {M|['+ M : A} form a set,
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2. We have an operation of substitution into a term that takes a term M €
Termy (') and a substitution v : A — I' and gives us

My] € Termy(A)

3. Furthermore, we shows that this satisfies two equations:

Mlidy] = M
M[ry o d] = M[~][d]

Therefore, the terms of any fixed type along with action of substitutions form a
predicator on the category of contexts and substitutions.
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