
Lecture 18: Extensions to STT, Monoid Actions

Lecturer: Max S. New
Scribe: Jonathan Moore

March 27, 2023

1 Setup

1.1 Last Time

Last time we discussed a weakening of an isomorphism between two categories C,D,
which we called equivalence. Instead of requiring the strict equalities F−1 ◦ F =
IdC, F ◦ F−1 = IdD, we only ask that there are natural isomorphism between them
(∼=). As we saw last time, there are many natural uses for this weakened notion of
”equality”

1.2 Today

Today we are going to weaken this notion even further. This weakening is also very
natural; in fact, we have actually already seen several examples of this in previous
lectures. Rather than an equivalence of categories, we will have a pair of ”Adjoint
Functors”.

1

2

2 Adjoint Functors

To gain some intuition into what adjoint functors are, we will start with a concrete
example:

2.1 Concrete Example (Sets and Moniods)

Let us look at two categories we have used frequently in the past: the category of
Sets, and the category of Monoids. As we saw previously, there is a functor, U , from
Mon to Set that takes the underlying set of elements from the monoid.

We also talked about a functor from sets to monoids called the ”free monoid”, F .
The free monoid on a set, X, is called FX, and is the monoid of finite sequences of
elements of X. Additionally, we had η : X −→ U(FX) where we define η(x) = [x].

Set Mon
F

U

Note that there are many possibilities for the definition of η(x), but this one is
special because it has the following universal property:

∀i : X −→ UM.∃!E[i] : FX −→ M s.t. the following diagram commutes:

U(FX) UM

X

U(E[i])

η

i

The homomorphism E[i] is constructed as follows:

E[i]([x0, x1, ...]) = E[i]([x0], [x1], ...)

= E[i]([x0]) · E[i]([x1]) · ...
= i(x0) · i(x1) · ...

and
E[i]([]) = e

Now that we have a construction from Mon to Set, we can show that this is, in
fact, a functor. We’re given a function f : X −→ Y (in Set), and we need to define a
morphism of monoids:

F [f] : FX −→ FY

Note that we don’t need to define F explicitly, since we can construct it simply by
specifying what to do with the underlying set. In this case, F = E[η ◦ F] (which can
be proven to be a functor).

EECS 598: Category Theory Winter 2023

3

Now we have two functors, one from Mon to Set (U), and one from Set to Mon
(F). But is this pair of functors an equivalence of categories? No! For example:

X ∈ Set0

UFX = finite sequences of Xs

If this was an equivalence, then by definition X ∼= UFX for all sets. However, if we
take the set 1, then we get that X is simply a one element set, but UFX is a monoid
of the natural numbers; the two are clearly not isomorphic as one is finite and the
other is infinite.

We will now weaken the requirement for an isomorphism, which is simply a mor-
phism in one direction. However, we already have a morphism from X −→ UFX,
which is η.

ηX : X −→ UFX

Lemma: η is a natural transformation (using the previous definition of F):

η : IdSet =⇒ U ◦ F

What about the other direction? Again it is not the case that we can construct
a natural isomorphism between M and FUM for similar reasons: the one element
monoid gets taken by FU to the monoid of natural numbers. But we can construct
a natural homomorphism, this time from F (U(M)) to M . Note that F (U(M)) is a
sequence of elements of a monoid [m0,m1, ...]. One way to think about it is that it is
a syntactic expression which represents

m0 “×”m1 “×” ...

We can then “remove the quotation marks” and make it actual multiplication, so we
map [m0,m1, ...] to m0×m1× ... (and we map the empty sequence to e). We will call
this homomorphism ε.

Formally,
ε : F (U(M)) −→ M

ε([m0,m1, ...]) = m0 ·m1 · ...
ε([]) = e

and in fact this definition of ε is natural in M :

ε : F ◦ U =⇒ IdMon

Now we have a similar, but weakened version of equivalence. Rather than saying
that the two functors must be naturally isomorphic to Id, we instead have a “directed”
version of that with natural transformations:

η : IdSet ⇒ UF

ε : FU ⇒ IdMon

EECS 598: Category Theory Winter 2023

4

However, there is still something that we are missing from equivalence: given F ,
F−1 is determined up to unique natural isomorphism. This is not the currently case
for our adjoint functors. We still want something similar to be true, though, so we
will construct equations that relate η and ε together.

We want a morphism F =⇒ F ◦ U ◦ F , which we can construct by applying F
to each morphism η. This is defined as follows:

Fη : F =⇒ FUF

(Fη)X : FX −→ FUFX

(Fη)X := F (η)X

Note that this is also natural, since applying a functor to any natural transforma-
tion results in another natural transformation.

We also want a morphism in the other direction; F ◦U ◦F =⇒ F using ε, which
we can define as:

εF : FUF =⇒ F

(εF)X : FUFX −→ FX

ε(F)X := εFX

This is also a natural transformation since we are just restricting the domain of
ε, which is a natural transformation.

This results in the following diagrams (both of which commute):

F F ◦ U ◦ F

F

Fη

IdF

εF

U U ◦ F ◦ U

U

ηU

IdU

Uε

EECS 598: Category Theory Winter 2023

5

3 Definition of Adjoint Functors

We can now define what a pair of adjoint functors is. Informally, it is simply two
functors with a pair of natural transformations which satisfy these two triangle iden-
tities (the diagrams above). Below are 4 formal definitions, all of which are equivalent
(they are in bijection; i.e. there are bijective functions between the sets defined in
each).

The first definition abstracts the structure we’ve seen so far; however, it can be
very tedious to construct and/or difficult to use. When actually working with adjoint
functors, the second is potentially easier to use while remaining symmetric. Finally
the 3rd and 4th are the easiest to construct a pair of adjoint functors with, but are
not symmetric (they are each other’s “mirrors”).

3.1 Definition 1

a. F : C −→ D

b. G : D −→ C

c. η : IdC =⇒ G ◦ F

d. ε : F ◦G =⇒ IdD

e. The following diagrams commute:

F F ◦G ◦ F

F

Fη

IdF

εF

G G ◦ F ◦G

G

ηG

IdG

Gε

3.2 Definition 2 (Potentially Easier to Use)

a. F : C −→ D

b. G : D −→ C

c. D(Fc, d) ∼= C(c,Gd)

where both sides of the natural isomorphism are from COP ×D −→ Set.

Note that because of this definition, we call F the “left adjoint” and G the “right
adjoint”. The notation for this is F ⊣ G.

EECS 598: Category Theory Winter 2023

6

3.3 Definition 3 (Easier to Construct, but Asymmetric)

An adjunction from C to D consists of:

a. G : D −→ C (a functor)

b. F0 : C0 −→ D0 (a function)

where F0 is not a functor, but rather a function from the objects of C to the
objects of D

c. ∀c ∈ C0.ηc ∈ C(c,G(F0c))

d. ∀c ∈ C0.∀i : C(c,Gd).∃!E[i] : D(F0c, d) s.t. the following diagram commutes:

GF0c Gd

c

G(E[i])

ηc
i

Note that this is just a generalization of our first concrete example with Set and Mon!

3.4 Definition 4 (Asymmetric the Other Way)

An adjunction from C to D consists of:

a. F : C −→ D (a functor)

b. G0 : D0 −→ C0 (a function)

c. ∀d ∈ D0.ε
d ∈ D(F (G0d), d)

d. ∀d ∈ D0.∀j : D(Fc, d).∃!I[j] : C(c,G0d) s.t. the following diagram commutes:

Fc F (G0d)

d

F (I[j])

j
εd

EECS 598: Category Theory Winter 2023

7

4 Closing Thoughts

4.1 Adjoint Functors and Universal Properties

It turns out that Definitions 3 and 4 are explicitly stating a universal property of
objects. Using definition 4 as a starting point,

F : C −→ D, fix d ∈ D0

we can define a predicator on C called G̃(d) as follows:

G̃(d)(c) := D(Fc, d)

Additionally, given g ∈ G̃(d)(c) and f : C(c′, c), we can define:

g ∗ f ∈ G̃(d)(c′), g ∗ f := g ◦ Ff

Note that Parts c and d of Definition 4 is exactly proving that this predicator is
representable (constructing a universal element). Furthermore, almost all universal
properties that we have seen in class are actually instances of adjoint functors!

4.2 Examples

4.2.1 Terminal Object

C has a terminal object iff the unique functor from C into the trivial category, 1:

∗ Cid
!

has a right adjoint.

A right adjoint would be some G from ∗ to C:

∗ Cid

!

G

Now we will use Definition 2, which means that:

1(!c, ∗) ∼= C(c,G∗)

but since 1 is the trivial set, the left side is naturally isomorphic to {id∗}. So we get
that there is exactly one morphism from c to G∗, which is exactly our definition of a
terminal object. Thus we could define a termial object as a kind of adjoint functor.

EECS 598: Category Theory Winter 2023

8

4.2.2 Binary Products

C has all binary products iff:

C × C C
∆

has a right adjoint, where ∆ is defined as: ∆c = (c, c);∆f = (f, f).

This right adjoint would be the “times” functor, which would construct a product
from two objects:

C × C C
∆

×

The adjunction would say that:

C(c, a× b) ∼= (C × C(∆c, (a, b)) ∼= C(c, a)× C(c, b)

which is exactly what we wanted, except that it should also be natural in c. However,
this follows from the bijection between Definition 4 and Definition 3!

EECS 598: Category Theory Winter 2023

