
Lecture 23: Call-By-Push-Value II

Lecturer: Max S. New
Scribe: Elanor Tang

April 5, 2023

To recap the main idea behind CBPV calculus, we want to take STT terms minus
the equations (also called typed λ-calculus) and have translations into CBPV that
correspond to either eager and lazy evaluation. The point is to impose equality in
CBPV (a kind of intermediate language) rather than in STT.

Typed λ-calc

CBPV

eager lazy

CBPV is similar to many other calculi:

• CPS - continuation passing style

• ANF - A-normal form

• SSA - static single assignment

• Monadic normal form

We choose to talk about CBPV since it is the nicest version from a type-theoretic
perspective. Here in CBPV we have equations even in the presence of evaluation order,
including η equations—the lack of η equations in effectful languages is reflected in
the translations.

1 CBPV Types and Terms

CBPV has two kinds of types: value types A and computation (abbreviated comp)
types B. We denote this as

A vtype B ctype

There are two kinds of corresponding terms

Γ ⊢ V : A Γ | ∆ ⊢ M : B

1

Lecture 23 2

where Γ is a context of value types and ∆ is a context of comp types which is either
empty or has a single variable • of comp type. That is,

∆ ::= · | • : B′

Here we can think of the value terms as being “pure” values or functions—these
behave like STT terms. We think of the comp terms as “effectful” computations (when
∆ input is empty) or strict/linear functions of the input (when ∆ has a variable). This
corresponds to the fact that in many models, terms with a single variable correspond
to homomorphisms. Here, linearity means that we do the • computation first when
evaluating M , and we perform this exactly once.

Altogether, this is what we call the judgmental structure of the type theory. In
our model, this would correspond to our notion of a CT structure.

2 Substitution Principle

We define the rules for substitution. These are all admissible, which we will ensure
with the term constructs. We denote admissibility with ∗.

First, we can substitute a value into a value. This rule is the same as STT
substitution.

γ : Γ′ → Γ Γ ⊢ V : A

Γ ⊢ V [γ] : A
*

We can also substitute a value into a computation/linear term.

γ : Γ′ → Γ Γ | ∆ ⊢ M : B

Γ′ | ∆ ⊢ M [γ] : B
*

Lastly, we can substitute a computation into a computation.

Γ | ∆ ⊢ M : B Γ | • : B ⊢ N : B′

Γ | ∆ ⊢ N [M] : B′ *

We write N [M] instead of N [M/•] since we always substitute for •. This is like
plugging something into an evaluation context in operational semantics: to evaluate
N , we will evaluate M first.

As before, these rules will have equations of associativity, etc. that we can prove
are valid.

3 Identity/Variable Rules

These rules are also similar to STT rules. First, variables themselves stand for pure
values and don’t perform computations.

x : A ∈ Γ

Γ ⊢ x : A

EECS 598: Category Theory Lecture 23

Lecture 23 3

We also have the comp variable, for any Γ.

Γ | • : B ⊢ • : B

This is a kind of trivial evaluation context. We’ll talk about the equations for these
rules later.

4 Connectives

4.1 Value Product Types

Value product types behave the same as before, except they are restricted to values.
First we define the value product type:

A1 vtype A2 vtype

A1 × A2 vtype

with introduction rule

Γ ⊢ V1 : A1 Γ ⊢ V2 : A2

Γ ⊢ (V1, V2) : A1 × A2

and elimination rules for i ∈ {1, 2}.

Γ ⊢ V : A1 × A2

Γ ⊢ πiV : Ai

The β and η rules are also the same as before, so we will not repeat them here.
The rules for the unit type are as follows:

1 vtype Γ ⊢ () : 1

Γ ⊢ V : 1

Γ ⊢ V = () : 1

We say () is the only term of unit type. That is, the unit type carries trivial data.

4.2 Return Types

Given a value type A, we can define a corresponding comp type describing the pro-
grams which can produce side effects and in the end return values of type A.

A vtype

RetA ctype

(Levy writes this rule as FA because it corresponds to the left adjoint in the semantics—
we prefer “return” because it matches programming more closely.)

EECS 598: Category Theory Lecture 23

Lecture 23 4

We define the introduction rule as follows:

Γ ⊢ V : A

Γ | · ⊢ retA : RetA
RetI

Here, the comp context is empty: when we’re returning, we are not doing any further
computations, so it does not use any input.

For the elimination rule, we have

Γ | ∆ ⊢ M : RetA Γ, x : A | · ⊢ N : B

Γ | ∆ ⊢ var x = M ;N : B
RetE

Given a comp term N which knows how to use A values, we can execute M until it
(possibly) produces a value which we bind to x, then we run N . Note that M might
never produce a value if we allow effects such as program crashing. Thus, CBPV is
a generic language for talking about effects: it has all kinds of adjunction models for
different effects, and we add in domain specific rules for particular effects. We’ll see
an example of this later. (We can also choose to make our return rule be invisible
syntactically, but here we describe it explicitly.)

We notice that this return type is also similar to coproducts: we could alternatively
write it as

caseRetM{retx.N}

As such, it has a similar contravariant universal property, and the β and η rules reflect
that. In particular, the β rule tells us that we have the introduction form, we can
simplify.

Γ ⊢ V : A Γ, x : A | · ⊢ M : B

Γ | · ⊢ var x = retV ;M = M [V/x] : B
Retβ

Here we use an empty context since the introduction rule has an empty context.
Note that this rule encompasses several compiler optimizations: if x is never

used, then it represents dead code elimination. If x appears multiple times in M ,
this represents common subexpression elimination when viewed from right to left.
Thus, we can justify compiler optimizations using the equational theory. Further,
this demonstrates the necessity of static analysis to determine if a subexpression is a
pure term, since this is a precondition to many compiler optimizations (such as the
ones described above).

For the η rule, we have

Γ | • : RetA ⊢ M : B Γ | ∆ ⊢ N : RetA

Γ | ∆ ⊢ M [N] = (var x = N ;M [retx]) : B
Retη

Note that M is linear in N : the first thing it should do is whatever N does, which
is represented by this rule. With this rule, we also finally include our semi-colon,
meaning we have a real PL. :)

EECS 598: Category Theory Lecture 23

Lecture 23 5

4.3 Sum Types

When restricted to pure values, the sum types behave the same as before; with
computations, it is slightly different. We first introduce our new types:

A1 vtype A2 vtype

A1 + A2 vtype 0 vtype

with the same introduction rules from STT, restricted to values.

Γ ⊢ V : A1

Γ ⊢ i1V : A1 + A2

Γ ⊢ V : A2

Γ ⊢ i2V : A1 + A2

The elimination type on values is also the same:

Γ ⊢ V : A1 + A2 Γ, x1 : A1 ⊢ V1 : A
′ Γ, x2 : A2 ⊢ V2 : A

′

Γ ⊢ case+V

{
i1x1 → V1

i2x2 → V2

: A′

Note that the case analysis is on pure expressions with no side effects. But it would
be inconvenient if we could only do a case analysis where the branches are pure
values—thus, we also allow elimination into comp terms.

Γ ⊢ V : A1 + A2 Γ, x1 : A1 | ∆ ⊢ M1 : B Γ, x2 : A2 | ∆ ⊢ M2 : B

Γ | ∆ ⊢ case+V

{
i1x1 → M1

i2x2 → M2

: B

Abusing notation slightly, we write the β and η rules for value and comp terms
simultaneously, where T represents a value or a computation. For j ∈ {1, 2}, we have
β rules

case+ijV

{
i1x1 → T1

i2x2 → T2

β+
= Tj[V/xj]

and for V : A1 + A2, we have η rule

T [V/x]
η+
= case+ijV

{
i1x1 → T1[i1x1/x]

i2x2 → T2[i2x2/x]

Note that this is only valid since V is pure: if it produced side effects, we might get
a different result when we lift it out of T .

For the empty type, we have elimination rules

Γ ⊢ V : 0

Γ ⊢ case0V {} : A

Γ ⊢ V : 0

Γ | ∆ ⊢ case0V {} : B

Here this comp context can be arbitrary, since if we have proven 0, the context is
inconsistent and the entire program is dead code anyway.

For V : 0, the η rule is given by

T [V/x]
η0
= case0V {}

As before, if V were under a variable binding, this rule would not make sense.

EECS 598: Category Theory Lecture 23

Lecture 23 6

4.4 Computation Product Types

We can think of the value product types defined before as tuples, whereas the com-
putation product types are more like lazy products or “objects,” in the sense that
projections are viewed as methods of the product, and we never evaluate a product
unless we choose the projection first. To introduce the new comp product type, we
use & to denote the difference from the value product type.

B1 ctype B2 ctype

B1&B2 ctype

In words, we might say this type is “B1 with B2.”
For the elimination rules for i ∈ {1, 2}, we have

Γ | ∆ ⊢ M : B1&B2

Γ | ∆ ⊢ M.πi() : Bi

The arbitrary context ∆ means we are allowed to have a comp variable. We also see
that projection is strict on the input: if M crashes, M.πi() will also crash. We write
M.πi() instead of πiM to emphasize how this projection behaves as a method call
rather than a tuple projection.

For the introduction rule, we have

Γ | ∆ ⊢ M1 : B1 Γ | ∆ ⊢ M2 : B2

Γ | ∆ ⊢ (M1,M2) : B1&B2

At first glance, this could appear to violate linearity, since we are supposed to evaluate
the term in the hole first, but we would move the hole into both sides of the product.
Here, however, it is okay since we use lazy evaluation: we never evaluate this term
unless we first project out one of the sides. Thus linearity is preserved.

We can also view this comp product introduction as akin to the λ case:

λ

{
.π1() → M1

.π2() → M2

This is called copattern matching. In some ways, comp products are similar to sum
type comp elimimation, except that here the two cases can have different types,
whereas for sums the two cases had to have the same type.

Using this notation, we define the β and η rules:(
λ

{
.π1() → M1

.π2() → M2

)
.πi()

β&
= Mi

Γ | ∆ ⊢ M : B1&B2

Γ | ∆ ⊢ M = λ

{
.π1() → M1.π1()

.π2() → M2.π2()
: B1&B2

η&

The β rule demonstrates how M : B1&B2 is evaluated lazily, as stated before. In
the η rule, we can have an arbitrary context here since there is an arbitrary context
in the comp product introduction.

EECS 598: Category Theory Lecture 23

Lecture 23 7

4.5 Function Types

When it comes to function types, there are three possibilities to consider:

1. A → B ctype, which are computations that take a value of type A and do
something.

2. A ⇒ A′ vtype, which are pure functions from A to A′.

3. B ⊸ B′ vtype, which are linear functions from B to B′.

We will go with the first option, since this most closely corresponds to functions in
effectful PLs. Then we have function type rule

A vtype B ctype

A → B ctype

with introduction

Γ, x : A | ∆ ⊢ M : B

Γ | ∆ ⊢ λx.M : A → B

and application elimination

Γ | ∆ ⊢ M : A → B Γ ⊢ V : A

Γ | ∆ ⊢ M V : B

where application is linear in M, since we use an arbitrary comp context.
The β and η rules are as follows:

(λx.M)V
β
= M [V/x]

M : A → B
η
= λx.M x

The η rule reflects how this is a lazy function type: we wait until we’re given input
to evaluate the function. This rule would not hold under eager evaluation, since on
the left side M might execute and produce side effects.

4.6 Closures

The return type gave us a way to get a comp type from a value type; now closures
give a way to get a value type from a comp type. The type rule is

B ctype

ClosureB vtype

We can also write Thunk B instead of ClosureB. This type represents the values
which are suspended computations: we don’t execute them unless we call them. This
allows us to write higher order programs which pass around computations as values.

EECS 598: Category Theory Lecture 23

Lecture 23 8

For the introduction rule, we have

Γ | · ⊢ M : B

Γ ⊢ proc {M} : ClosureB

where “proc” stands for “procedure,” since we suspend M as a procedure that can
be executed. Here M can use any variables in the current context Γ, so we need that
context for the closure of M to typecheck.

The elimination rule is

Γ ⊢ V : ClosureB

Γ | · ⊢ V.call() : B

Here we have an empty context, since there is no input when we call the procedure.
The β and η rules enforce that introduction and elimination are inverses of each

other. For the β rule, we have

(proc {M}).call() β
= M

which validates code inlining. For the η rule, given that V : ClosureB, we have

proc {V.call()} η
= V

which means that you can’t observe the number of procedure calls. This rule is
necessary for most compiler optimizations.

5 Example: Beep and Boop

We now return to our motivating example of printing beeps and boops to demonstrate
how we can add effects with additional rules. In particular, we add rules

Γ | · ⊢ M : B

Γ | · ⊢ beep;M : B

Γ | · ⊢ M : B

Γ | · ⊢ boop;M : B

Here we have an empty context since we want beep or boop to be the first thing we
execute, rather than whatever is in the comp context. We also note that if we have
the return type, we could derive the above rules from

Γ | · ⊢ beep : Ret 1 Γ | · ⊢ boop : Ret 1

but here we will add beeps and boops explicitly.
Since we care about the uniqueness of beep and boop printing, we do not want

beep and boop to commute. We do, however, want a general rule saying that every
computation with a free comp variable should commute with these new effects.

Γ | • : B ⊢ M : B′ Γ | · ⊢ N : B

Γ | · ⊢ M [beep;N] = beep;M [N] : B′

EECS 598: Category Theory Lecture 23

Lecture 23 9

This rule enforces strictness, or in other words, it says that substitution is equivariant.
Note that since we allow the • variable, strictness applies to many of the previous
rules. For example,(

var x = (beep;M);N
)
= beep; (var x = M ;N)

since the rule governing return type elimination allows for a • context.

EECS 598: Category Theory Lecture 23

