Problem Set 2: Simple Type Theory

Released: January 23, 2023
Due: February 01, 2023, 11:59pm
Last modified: Jan 31, 2023, 12:00pm

Submit your solutions to this homework on Canvas in a group of 2 or 3 . Your solutions must be submitted in pdf produced using LaTeX.

Corrections/Modifications: The following have been fixed from the initial released version:

1. The rule of substitution () $[\gamma]=()$ has been corrected.
2. The notation $\gamma, M / x$ was previously incorrectly written as $\gamma[M / x]$.
3. Extra parentheses were added to help disambiguate the meaning of $(\gamma(x))[\delta]$: This means first apply γ to the variable x to get a term $\gamma(x)$ and then apply the substitution δ to that term.
4. The rule for weakening was reversed.
5. Corrected formulation of Problem 2.6.
6. Correct due date, matching Canvas and the course website.
7. Fix a typo in part 1 of problem 2.
8. Amend 2.1 to only require representative cases
9. Add some hints as to which parts of problem 2 are by induction.

Problem 1 Exponential Isomorphisms

We say that $x: A \vdash M: B$ and $y: B \vdash N: A$ form an isomorphism if $x: A \vdash$ $N[M / y]=x$ and $y: B \vdash M[N / x]=y: B$. In this case we say A and B are isomorphic, written $A \cong B$.

Construct the following isomorphisms (with proof):

1. $A \Rightarrow B \Rightarrow C \cong(A \times B) \Rightarrow C$
2. $A \Rightarrow(B \times C) \cong(A \Rightarrow B) \times(A \Rightarrow C)$
3. $(A \Rightarrow 1) \cong 1$
4. $(A+B) \Rightarrow C \cong(A \Rightarrow C) \times(B \Rightarrow C)$
5. $0 \Rightarrow C \cong 1$

This gives an idea of why $A \Rightarrow B$ is in category theory sometimes called the exponential and written B^{A}.

Problem 2 Admissibile Rules in STT

When all variables are known to be distinct, substitution $M[N / x]$ can simply be defined as the replacement of x with N everywhere in the term M. This definition is the STT version of the admissibility of the substitution principle of IPL:

$$
\frac{\Gamma \vdash M: A \quad \Gamma, x: A \vdash N: B}{\Gamma \vdash N[M / x]} \operatorname{SubST}(*)
$$

The admissible principle of contraction can also be viewed as a textual substitution in the term:

$$
\frac{\Gamma, x: A, y: A, \Delta \vdash M: C}{\Gamma, x: A, \Delta \vdash M[x / y]: C} \text { Contraction }\left(^{*}\right)
$$

On the other hand, the use of variables to stand for assumptions means that exchange and weakening have no effect on the proof term:

$$
\frac{\Gamma, y: B, x: A, \Delta \vdash M: C}{\Gamma, x: A, y: B, \Delta \vdash M: C} \operatorname{Exchange}(*) \quad \frac{\Gamma, \Delta \vdash M: C}{\Gamma, x: A, \Delta \vdash M: C} \text { Weakening }(*)
$$

In this exercise you will show all of these principles are admissible and additionally prove some equations about substitution.

The simplest inductive proofs involve an auxiliary notion. We define a substitution from Δ to Γ to be a function γ that for each variable $x: A \in \Gamma$ produces a term $\Delta \vdash \gamma(x): A$. We write $\gamma: \Delta \rightarrow \Gamma$ to mean a substitution from Δ to Γ. We can then define an admissible action of substitution:

$$
\frac{\gamma: \Delta \rightarrow \Gamma \quad \Gamma \vdash M: A}{\Delta \vdash M[\gamma]: A} \text { GEnSubst }
$$

Defined by induction on M :

$$
\begin{aligned}
x[\gamma] & =\gamma(x) \\
f\left(M_{1}, \ldots,\right)[\gamma] & =f\left(M_{1}[\gamma], \ldots\right) \\
(M, N)[\gamma] & =(M[\gamma], N[\gamma]) \\
\left(\pi_{j} M\right)[\gamma] & =\pi_{j} M[\gamma] \\
()[\gamma] & =() \\
\left(i_{j} M\right)[\gamma] & =i_{j} M[\gamma] \\
\left(\text { case }_{+} M\left\{i_{1} x_{1} \rightarrow N_{1} \mid i_{2} x_{2} \rightarrow N_{2}\right\}\right)[\gamma] & =\left(\operatorname{case}_{+} M[\gamma]\left\{i_{1} x_{1} \rightarrow N_{1}\left[\gamma, x_{1} / x_{1}\right] \mid i_{2} x_{2} \rightarrow N_{2}\left[\gamma, x_{2} / x_{2}\right]\right\}\right) \\
\left(\operatorname{case}_{0} M\{ \}\right)[\gamma] & =\operatorname{case}_{0} M[\gamma]\{ \} \\
(\lambda x . M)[\gamma] & =\lambda x \cdot M[\gamma, x / x] \\
(M N)[\gamma] & =M[\gamma] N[\gamma]
\end{aligned}
$$

Where the notation $\gamma, M / x$ is the extension of the the function to map x to M :

$$
\begin{array}{ll}
(\gamma, M / x)(y)=M & (\text { if } x=y) \\
(\gamma, M / x)(y)=\gamma(y) & (\text { if } x \neq y)
\end{array}
$$

Define the identity substitution $\mathrm{id}_{\Gamma}: \Gamma \rightarrow \Gamma$ to map each variable in Γ to itself: $\operatorname{id}(x)=x$.

Given $\gamma: \Delta \rightarrow \Gamma$ and $\delta: \Xi \rightarrow \Delta$, define the composition $\gamma \circ \delta: \Xi \rightarrow \Gamma$ as $(\gamma \circ \delta)(x)=(\gamma(x))[\delta]$.

Below assume $\gamma: \Delta \rightarrow \Gamma, \delta: \Xi \rightarrow \Delta, \xi: \Xi^{\prime} \rightarrow \Xi$ and $\Gamma \vdash M: A$.

1. Show (by induction on the derivation of $\Gamma \vdash M: A$) that $\Delta \vdash M[\gamma]: A$, i.e., that the GenSubst typing rule is admissible. You only need to show the following representative cases: $M=x, M=f\left(M_{0}, \ldots\right), M=\lambda x . M^{\prime}$ and $M=M^{\prime} N$.
2. Show that one-place substitution, weakening, exchange and contraction are all instances of GenSubst.
3. Show (by induction on M) that $M\left[\mathrm{id}_{\Gamma}\right]=M$. Note that this and the following equalities are exact syntactic equalities, you will not need to use any $\beta \eta$ rules to prove it.
4. Show that $\gamma \circ \operatorname{id}_{\Delta}=\gamma$ and $\operatorname{id}_{\Gamma} \circ \gamma=\gamma$.
5. Show (by induction on M) that $M[\gamma \circ \delta]=(M[\gamma])[\delta]$
6. Show as a corollary that if $x_{2}: A_{2} \vdash N_{1}: A_{1}$ and $x_{3}: A_{3} \vdash N_{2}: A_{2}$ and $x_{4}: A_{4} \vdash N_{3}: A_{3}$ then $\left(N_{1}\left[N_{2} / x_{2}\right]\right)\left[N_{3} / x_{3}\right]=N_{1}\left[N_{2}\left[N_{3} / x_{3}\right] / x_{2}\right]$.
7. Show that $(\gamma \circ \delta) \circ \xi=\gamma \circ(\delta \circ \xi)$
