Problem Set 5

Released: March 6, 2023 Due: March 17, 2023, 11:59pm Last modified: Mar 13, 2023, 5pm

Modifications:

- Add several more definitions and the weak initiality theorems as a reference.
- Fix some notation Un_{γ} to match that used in class.
- Add assumption that C has a terminal object to problem 1.

Submit your solutions to this homework on Canvas in a group of 2 or 3. Your solutions must be submitted in pdf produced using LaTeX.

Definition 1. Let C be a category

• An initial object in C is an object $0 \in C$ such that for any $a \in C$, there is a unique morphism

$$[]: \mathcal{C}(0,a)$$

- A binary coproduct structure for $a_1, a_2 \in C$ consists of
 - $-An \ object \ a_1 + a_2 \in \mathcal{C}$
 - Morphisms $i_1 : C(a_1, a_1 + a_2)$ and $i_2 : C(a_2, a_1 + a_2)$
 - Such that for every $g_1 : C(a_1, b)$ and $g_2 : C(a_2, b)$ there exists a unique $[g_1, g_2] : C(a_1 + a_2, b)$ satisfying $[g_1, g_2] \circ i_1 = g_1$ and $[g_1, g_2] \circ i_2 = g_2$.

Definition 2. Let C be a category with binary products.

An initial object $0 \in \mathcal{C}$ is distributive if for every $a \in \mathcal{C}$ the unique morphism

$$0 \to a \times 0$$

is an isomorphism.

A binary coproduct $a_1 + a_2$ with injections $i_1 : a_1 \to a_1 + a_2$ and $i_2 : a_2 \to a_1 + a_2$ is distributive if for every $b \in C$, the morphism

 $[id_b \times i_1, id_b \times i_2] : (b \times a_1) + (b \times a_2) \to b \times (a_1 + a_2)$

is an isomorphism.

Definition 3. A CT structure S consists of

- 1. A category S_c
- 2. A set S_T .
- 3. For each type $A \in S_T$ a predicator $\operatorname{Tm}(A)$ on \mathcal{S}_c .
- 4. A terminal object $1 \in S_c$
- 5. For each $\Gamma_1, \Gamma_2 \in \mathcal{S}_c$ a product structure $(\Gamma_1 \times \Gamma_2, \pi_1, \pi_2)$ for Γ_1, Γ_2 , that is
 - An object $\Gamma_1 \times \Gamma_2 \in \mathcal{S}_c$
 - Morphisms $\pi_1^{\Gamma_1,\Gamma_2}: \Gamma_1 \times \Gamma_2 \to \Gamma_1$ and $\pi_2^{\Gamma_1,\Gamma_2}: \Gamma_1 \times \Gamma_2 \to \Gamma_2$.
 - Such that for any $\Delta \in S_c$ and $f_1 : \Delta \to \Gamma_1$ and $f_2 : \Delta \to \Gamma_2$ there exists a unique $(f_1, f_2) : \Delta \to \Gamma_1 \times \Gamma_2$ such that $\pi_1^{\Gamma_1, \Gamma_2} \circ (f_1, f_2) = f_1$ and $\pi_2^{\Gamma_1, \Gamma_2} \circ (f_1, f_2) = f_2$.
- 6. For each $A \in S_T$ a singleton context structure (sole A, var) for A, that is,
 - An object sole $A \in \mathcal{S}_c$
 - An element $\operatorname{var}^A \in \operatorname{Tm}(A)(\operatorname{sole} A)$
 - Such that for any $\Gamma \in S_c$ and $M \in \operatorname{Tm}(A)(\Gamma)$, there exists a unique $M/\operatorname{var}^A \in \Gamma \to \operatorname{sole} A$ such that $\operatorname{var}^A * M/\operatorname{var}^A = M$.

Definition 4. Let S be a CT structure and $\Gamma \in S_c$. Define a category Un_{Γ} as follows:

- $(\mathrm{Un}_{\Gamma})_0 = \mathcal{S}_T$
- $(\mathrm{Un}_{\Gamma})_1(A, B) = \mathrm{Tm}_{\mathcal{S}}B(\Gamma \times \mathrm{sole}A)$
- With identity

$$id_A = \operatorname{var}^A * (\pi_2^{\Gamma, \operatorname{sole} A})$$

• composition of $M \in \operatorname{Tm}_{\mathcal{S}} C(\Gamma \times \operatorname{sole} B)$ and $N \in \operatorname{Tm}_{\mathcal{S}} B(\Gamma \times \operatorname{sole} A)$ defined as

$$M \circ N = M * (\pi_1^{\Gamma, \text{sole}A}, N/\text{var}^B)$$

• Identity and associativity properties follow from properties of products and the singleton contexts.

Let $\gamma \in \mathcal{S}_c(\Delta, \Gamma)$, then we define a functor $\operatorname{Un}_{\gamma} : \operatorname{Un}_{\Gamma} \to \operatorname{Un}_{\Delta}$ as

$$Un_{\gamma}(A) = A$$

$$Un_{\gamma}(M) = M * (\gamma \circ \pi_1, \pi_2)$$

This preserves identity and composition again by properties of products and singleton contexts.

Definition 5. Let S be a CT structure.

- A unit type in S is a type $1 \in S_T$ such that for every $\Gamma \in S_c$ there exists a unique term $() \in \text{Tm}(1)(\Gamma)$.
- A product of types $A_1, A_2 \in S_T$ is a type $A_1 \times A_2 \in S_T$ with terms $\pi_1 \in \operatorname{Tm}(A_1)(\operatorname{sole}(A_1 \times A_2))$ and $\pi_2 \in \operatorname{Tm}(A_2)(\operatorname{sole}(A_1 \times A_2))$ such that for any pair of terms $M_1 \in \operatorname{Tm}(A_1)(\Gamma)$ and $M_2 \in \operatorname{Tm}(A_2)(\Gamma)$ there exists a unique term $(M_1, M_2) \in \operatorname{Tm}(A_1 \times A_2)(\Gamma)$ satisfying $\pi_1 * (M_1, M_2) = M_1$ and $\pi_2 * (M_1, M_2) = M_2$.
- An exponential of types $A, B \in S_T$ is a type $A \Rightarrow B \in S_T$ with a term app $\in \operatorname{Tm}B(\operatorname{sole}(A \Rightarrow B) \times \operatorname{sole}A)$ such that for any $M \in \operatorname{Tm}B(\Gamma \times \operatorname{sole}A)$ there exists a unique $\lambda M \in \operatorname{Tm}(A \Rightarrow B)\Gamma$ satisfying app $*(\lambda M * \pi_1^{\Gamma,\operatorname{sole}A}, \pi_2^{\Gamma,\operatorname{sole}A}) = M$
- An empty type in S is a type $0 \in S_T$ such that for every $\Gamma \in S_c$, 0 is an initial object in Un_{Γ} .
- A sum type for $A_1, A_2 \in S_T$ is a type $A_1 + A_2 \in S_T$ with for each $\Gamma \in S_C$ a coproduct structure $(A_1 + A_2, i_1^{\Gamma}, i_2^{\Gamma})$ for A_1, A_2 such that for every $\gamma \in S_c(\Delta, \Gamma)$,

$$\operatorname{Un}_{\gamma}(i_1^{\Gamma}) = i_1^{\Delta}$$

and

$$\operatorname{Un}_{\gamma}(i_2^{\Gamma}) = i_2^{\Delta}$$

Definition 6. Let S be a CT structure

- A binary coproduct structure for $a_1, a_2 \in C$ consists of
 - $-An \ object \ a_1 + a_2 \in \mathcal{C}$
 - Morphisms $i_1 : C(a_1, a_1 + a_2)$ and $i_2 : C(a_2, a_1 + a_2)$
 - Such that for every $g_1 : C(a_1, b)$ and $g_2 : C(a_2, b)$ there exists a unique $[g_1, g_2] : C(a_1 + a_2, b)$ satisfying $[g_1, g_2] \circ i_1 = g_1$ and $[g_1, g_2] \circ i_2 = g_2$.

Problem 1 Sums and Distributive coproducts

Let C be a category with a terminal object and all binary products, i.e., all finite products. In class we discussed that (almost tautologically) C has

• all exponentials if and only if self C has all function types.

Your task is to prove the following non-trivial correspondences:

- 1. C has a *distributive* initial object if and only if self C has an empty type.
- 2. For any $a, b \in C$, C has a *distributive* coproduct of a and b if and only if self C has a sum type of a and b.

.

Definition 7. A CT structure homomorphism $F : S \to T$ consists of

- A functor $F_c : S_c \to \mathcal{T}_c$ of context categories such that
 - If $1 \in S_c$ is the chosen terminal object of S_c then $F_c 1$ is terminal in \mathcal{T}_c .
 - For every $\Gamma_1, \Gamma_2, F_c(\Gamma_1 \times \Gamma_2), F_c(\pi_1^{\Gamma_1,\Gamma_2}), F_c(\pi_2^{\Gamma_1,\Gamma_2})$ is a product structure for $F_c\Gamma_1, F_c\Gamma_2$ in \mathcal{T}_c .
- A function $F_T : S_T \to \mathcal{T}_T$ of types and for each $A \in S_T$, a natural transformation $F_{\mathrm{Tm}} : \mathrm{Tm}(A) \to \mathrm{Tm}(F_T A) \circ F_c^{op}$ such that
 - For each $A \in \mathcal{S}_T$, $(F_T(\text{sole}A), F_{\text{Tm}}(\text{var}^A))$ is a singleton context structure for F_TA .

Definition 8. Let S, T be CT structures such that S has a unit type 1 and all product types $(A_1 \times A_2, \pi_1, \pi_2)$ and let $F : S \to T$ be a homomorphism of CT structures.

- 1. F preserves the unit type if $F_T 1$ is a unit type in \mathcal{T}
- 2. F preserves product types if for every product type structure $(A_1 \times A_2, \pi_1, \pi_2)$ for $A_1, A_2, (F_T(A_1 \times A_2), F_{Tm}(\pi_1), F_{Tm}(\pi_2))$ is a product structure for FA_1, FA_2 .

Definition 9. A homomorphism of CT structures $F : S \to \mathcal{T}$ is faithful if for each $\Gamma \in S_c$ and $A \in S_T$, the function $F_{tm}^{A,\Gamma} : \operatorname{Tm}_{\mathcal{S}}(A)(\Gamma) \to \operatorname{Tm}_{\mathcal{T}}(FA)(F\Gamma)$ is injective.

For the remainder, fix a set of base types Σ_0

Definition 10. Define $\mathcal{L}(\times, 1)$ to be the syntactic CT structure for STT generated from the base types in Σ_0 and the connectives $1, \times$.

- $\mathcal{L}(\times, 1)_T$ is the set of STT types generated from base types and $1, \times$
- $\mathcal{L}(\times, 1)_c$ is the category of STT contexts and substitutions using base types and $1, \times$
- $\operatorname{Tm}_{\mathcal{L}(\times,1)}$ is the predicator of terms using base types and $1, \times$.

Similarly define $\mathcal{L}(\times, 1, \Rightarrow)$ to be the syntactic CT structure for STT generated from base types in Σ_0 and the connectives $1, \times, \Rightarrow$.

Theorem 1 (Weak Initiality of Syntactic CT Structures). Let S be a CT structure and $\iota : \Sigma_0 \to S_T$ a function.

• If S has unit and product types, then we can construct a homomorphism of CT structures (soundness)

$$\llbracket \cdot \rrbracket^{\iota} : \mathcal{L}(\times, 1) \to \mathcal{S}$$

that preserves unit and product types and base types in that for every $X \in \Sigma_0$, $\llbracket \cdot \rrbracket^i = i(X)$.

Furthermore (completeness) $\llbracket \cdot \rrbracket^{\iota}$ is essentially unique, in that if $F : \mathcal{L}(\times, 1) \to \mathcal{S}$ is a homomorphism preserving unit types, product types and F(X) = i(X) for every $X \in \Sigma_0$, then there is a unique natural isomorphism $\alpha_c : \mathcal{S}_c^{\mathcal{L}(\times,1)_c}(\llbracket \cdot \rrbracket^{\iota}, F)$. • An analogous theorem holds for L(×, 1, ⇒): if S has unit, product and function types, we can construct a homomorphism of CT structures (soundness)

$$(\!\!\!(\cdot)\!\!\!)^{\iota}: \mathcal{L}(\times, 1, \Rightarrow) \to \mathcal{S}$$

that preserves unit, product, function types and base types.

Furthermore (completeness) $(\!\!\!\!)^{\iota}$ is essentially unique, in that if $F : \mathcal{L}(\times, 1, \Rightarrow)$) $\rightarrow S$ is a homomorphism preserving unit types, product types, function types and base types then there is a unique natural isomorphism $\alpha_C : S_c^{\mathcal{L}(\times, 1, \Rightarrow)_c}((\!\!\!\!)^{\iota}, F)$.

Definition 11. Define a CT structure homomorphism $i : \mathcal{L}(\times, 1) \to \mathcal{L}(\times, 1, \Rightarrow)$, the inclusion of the smaller type theory into the larger one:

 $i_c(\Gamma) = \Gamma$ $i_c(\gamma) = \gamma$ $i_{ty}(A) = A$

 $i_{tm}([M]) = [M]$ ([M] means the equivalence class of M in the equational theory.)

Observe that this is a CT structure homomorphism and additionally preserves product types and the unit type.

Problem 2 Conservativity of Adding Function Types to STT

Our goal is to prove that adding function types to STT with product types results in a conservative extension of the equational theory. That is, we want to show for any $\Gamma \in \mathcal{L}(\times, 1)_c$ and $A \in \mathcal{L}(\times, 1)_{ty}$, and $\Gamma \vdash M : A$ and $\Gamma \vdash M' : A$, if $\Gamma \vdash M = M' : A$ is provable in $STT(\times, 1, \Rightarrow)$, then in fact $\Gamma \vdash M = M' : A$ is already provable in $STT(\times, 1)$. Unraveling definitions, this says precisely that the homomorphism *i* is *faithful*.

We will prove this using a generalization of the method we used in problem set 1^1 .

- 1. Show that if $F : S \to T$ and $G : T \to U$ are homomorphisms of CT structures and $G \circ F$ is faithful then F is faithful.
- 2. Show that if $F : S \to T$ and $F' : S \to T$ are homomorphisms of CT structures and $\alpha_c \in \mathcal{T}_c^{\mathcal{S}_c}(F, F')$ is a natural isomorphism and F is faithful then F' is faithful.
- 3. Show that for any category C, the category of predicators \mathscr{PC} is cartesian closed (HINT: the cartesian closed structure is a direct generalization of the Heyting algebra structure you constructed in PS1). Therefore self(\mathscr{PC}) has unit, binary products and function types.

¹again, there is a more complex proof that proves conservativity when we additionally have sum types

- 4. Define for every C-T structure \mathcal{S} , a homomorphism $Y : S \to \operatorname{self}(\mathscr{PS}_c)$ (Hint: use the Yoneda embedding) that
 - is faithful (Hint: use the Yoneda lemma)
 - preserves unit and product types
- 5. Define a homomorphism of CT structures $G : \mathcal{L}(\times, 1, \Rightarrow) \to \operatorname{self}(\mathscr{PL}(\times, 1)_c)$ and a natural isomorphism between $G \circ i$ and Y. (Hint: use the soundness part of weak initiality for $\mathcal{L}(\times, 1, \Rightarrow)$ and the completeness part of weak initiality for $\mathcal{L}(\times, 1)$).
- 6. Conclude that i is faithful.

In fact, this functor *i* satisfies an additional property: it is also *full*, meaning that $i_{tm}^{A,\Gamma}$ is not just injective but also *surjective*. That is, for any $\Gamma \in \mathcal{L}(\times, 1)_c$ and $A \in \mathcal{L}(\times, 1, \Rightarrow)_T$, if $\Gamma \vdash M : A$ is a term in $STT(\times, 1, \Rightarrow)$ then there exists a term $\Gamma \vdash M' : A$ in $STT(\times, 1)$ such that $\Gamma \vdash M = M' : A$ is provable. This can be proven using a more complex, but similar construction. See Crole chapter 4.10 for a variant of this argument.

• • • • • • • • •